1.1.7 柱、锥、台和球的体积,第一章 1.1 空间几何体,学习目标 1.理解祖暅原理的内容. 2.了解柱、锥、台体的体积公式的推导. 3.掌握柱、锥、台和球的体积公式.,问题导学,达标检测,题型探究,内容索引,问题导学,思考 取一摞纸张堆放在桌面上(如图所示) ,并改变它们的放置方法,观察改变前
人教A版高中数学必修二课件1.3.2球的体积和表面积Tag内容描述:
1、1.1.7 柱、锥、台和球的体积,第一章 1.1 空间几何体,学习目标 1.理解祖暅原理的内容. 2.了解柱、锥、台体的体积公式的推导. 3.掌握柱、锥、台和球的体积公式.,问题导学,达标检测,题型探究,内容索引,问题导学,思考 取一摞纸张堆放在桌面上(如图所示) ,并改变它们的放置方法,观察改变前后的体积是否发生变化?从这个事实中你得到什么启发?,答案 体积没有发生变化,从这个事实中能够猜测出两等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.,知识点一 祖暅原理,梳理 祖暅原理的含义及应用 (1)内容:幂势既同,。
2、1.3.1 柱体、锥体、台体的表面积与体积,第一章 1.3 空间几何体的表面积与体积,学习目标 1.了解柱体、锥体、台体的表面积与体积的计算公式. 2.理解并掌握侧面展开图与几何体的表面积之间的关系,并能利用计算公式求几何体的表面积与体积.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 棱柱、棱锥、棱台的表面积,特别提醒 棱柱、棱锥、棱台的侧面积与表面积 将棱柱、棱锥、棱台的侧面展开,其侧面展开图分别是由若干个平行四边形、若干个三角形、若干个梯形组成的平面图形,侧面展开图的面积就是棱柱、棱锥、棱台的侧面积. 棱柱。
3、1.1.6 棱柱、棱锥、棱台和球的表面积,第一章 1.1 空间几何体,学习目标 1.理解棱柱、棱锥、棱台和球的表面积的概念,了解它们的侧面展开图. 2.掌握直棱柱、正棱锥、正棱台的表面积公式,并会求它们的表面积. 3.掌握球的表面积公式并会求球的表面积.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 直棱柱、正棱锥、正棱台和旋转体的表面积,ch,侧面积,底面积,4R2,其中c,c分别表示上、下底面周长,h表示高,h表示斜高,R表示球的半径.,思考辨析 判断正误 1.多面体的表面积等于各个面的面积之和.( ) 2.斜三棱柱的侧面积也可以用cl来求。
4、1.3.2 球的体积和表面积【课时目标】 1了解球的体积和表面积公式2会用球的体积和表面积公式解决实际问题3培养学生的空间想象能力和思维能力1球的表面积设球的半径为 R,则球的表面积 S_,即球的表面积等于它的大圆面积的_倍2球的体积设球的半径为 R,则球的体积 V_一、选择题1一个正方体与一个球表面积相等,那么它们的体积比是( )A B66 2C D22 32把球的表面积扩大到原来的 2 倍,那么体积扩大到原来的( )A2 倍 B2 倍2C 倍 D 倍2 323正方体的内切球和外接球的体积之比为( )A1 B133C13 D1934若三个球的表面积之比为 123,则它们的体积之比。
5、7.3 球的表面积和体积,第一章 7 简单几何体的面积和体积,学习目标 1.了解球的表面积与体积公式,并能应用它们求球的表面积及体积. 2.会求解组合体的体积与表面积.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 球的截面,思考 什么叫作球的大圆与小圆? 答案 平面过球心与球面形成的截线是大圆. 平面不过球心与球面形成的截线是小圆.,梳理 用一个平面去截半径为R的球O的球面得到的是 ,有以下性质: (1)若平面过球心O,则截线是以 为圆心的球的大圆. (2)若平面不过球心O,如图,设OO,垂足为O,记OOd,对于平面与球面的任意一个。
6、1.3.2 球的体积和表面积,第一章 1.3 空间几何体的表面积与体积,学习目标 1.掌握球的表面积和体积公式. 2.能解决与球有关的组合体的计算问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 球的表面积和体积公式,1.球的表面积公式 (R为球的半径); 2.球的体积公式V R3.,S4R2,1.球的表面积等于它的大圆面积的2倍.( ) 2.两个球的半径之比为12,则其体积之比为14.( ) 3.球心与其截面圆的圆心的连线垂直于截面.( ),思考辨析 判断正误,题型探究,例1 (1)已知球的表面积为64,求它的体积;,类型一 球的体积和表面积,解答,解 设球的半径为。