3.3 三角函数的积化和差与和差化积,第三章 三角恒等变换,学习目标 1.了解利用两角和与差的正弦、余弦公式导出积化和差、和差化积两组公式的过程. 2.理解在推导积化和差、和差化积公式中方程思想、换元思想所起的作用.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 积化和差公式,根
人教A版高中数学必修四1.6 三角函数模型的简单应用课件Tag内容描述:
1、3.3 三角函数的积化和差与和差化积,第三章 三角恒等变换,学习目标 1.了解利用两角和与差的正弦、余弦公式导出积化和差、和差化积两组公式的过程. 2.理解在推导积化和差、和差化积公式中方程思想、换元思想所起的作用.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 积化和差公式,根据两角和与差的正、余弦公式把下列等式补充完整. sin()sin() ; sin()sin() ; cos()cos() ; cos()cos() . 在上述四个等式两边同乘以 ,等号两端互换,就可以得出四个相应的积化和差公式.,2sin cos ,2cos sin ,2cos cos ,2sin sin ,梳理,积。
2、第五章 三角函数 5.75.7 三角函数的应用三角函数的应用 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.了解三角函数是描述周期变化现 象的重要函数模型,并会用三角函 数模型解决一些简单的实际问 题重点 2.。
3、1.2.1 三角函数的定义,第一章 1.2 任意角的三角函数,学习目标 1.理解任意角的三角函数的定义. 2.掌握三角函数在各个象限的符号. 3.掌握正弦、余弦、正切函数的定义域.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 任意角的三角函数,角的正弦、余弦、正切分别等于什么?,答案,使锐角的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,作PMx轴于M,设P(x,y),|OP|r.,思考2,对确定的锐角,sin ,cos ,tan 的值是否随P点在终边上的位置的改变而改变?,答案,答案 不会.因为三角函数值是比值,其大小与点P(x。
4、1.2.2 同角三角函数的基本关系,第一章 1.2 任意角的三角函数,学习目标 1.能通过三角函数的定义推导出同角三角函数的基本关系式. 2.理解同角三角函数的基本关系式. 3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点 同角三角函数的基本关系式,计算下列式子的值: (1)sin230cos230; (2)sin245cos245; (3)sin290cos290. 由此你能得出什么结论?尝试证明它.,答案,答案 3个式子的值均为1. 由此可猜想: 对于任意角,有sin2cos21,下面用三角函数的定义证明: 。
5、1.3 三角函数的诱导公式(二),第一章 三角函数,学习目标 1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化简与证明问题. 2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与个性,培养由特殊到一般的数学推理意识和能力. 3.继续体会知识的“发生”“发现”过程,培养研究问题、发现问题、解决问题的能力.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 诱导公式五,由此可得诱导公式五,cos ,sin ,思考,知识点二 诱导公式六,能否利用已有公式得出 的正弦、余弦与角的正弦、余弦之间的关系?,答案,答案 以代替公。
6、第一章 三角函数,9 三角函数的简单应用,学习目标 1.会用三角函数解决一些简单的实际问题. 2.体会三角函数是描述周期变化现象的重要函数模型.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点 利用三角函数模型解释自然现象,现实世界中的周期现象可以用哪种数学模型描述?,答案,答案 三角函数模型.,在客观世界中,周期现象广泛存在,潮起潮落、星月运转、昼夜更替、四季轮换,甚至连人的情绪、体力、智力等心理、生理状况都呈现周期性变化.,梳理,(1)利用三角函数模型解决实际问题的一般步骤: 第一步:阅读理解,审清题意. 读题。
7、1.2.1 任意角的三角函数(二),第一章 1.2 任意角的三角函数,学习目标 1.掌握正弦、余弦、正切函数的定义域. 2.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切. 3.能利用三角函数线解决一些简单的三角函数问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 三角函数的定义域,正切函数ytan x为什么规定xR且xk ,kZ?,答案,梳理,正弦函数ysin x的定义域是_;余弦函数ycos x的定义域是_; 正切函数ytan x的定义域是 .,x|xR且xk ,kZ,R,R,思考1,知识点二 三角函数线,在平面直角坐标系中,任意角的终边与单。
8、第一章 三角函数1.6 三角函数模型的简单应用1三角函数模型的简单应用三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测等方面发挥着十分重要的作用.教材中的例3、例4对太阳光照以及潮汐问题的研究为我们展示了怎样运用模型化的思想建立三角函数模型的方法和过程.2三角函数模型应用的步骤三角函数模型应用即建模问题,根据题意建立三角函数模型,再求出相应的三角函数在某点处的函数值,进而使实际问题得到解决.步骤可记为:审读题意建立三角函数式根据题意求出某点的三角函数值解决实际问。