3.3 三角函数的积化和差与和差化积,第三章 三角恒等变换,学习目标 1.了解利用两角和与差的正弦、余弦公式导出积化和差、和差化积两组公式的过程. 2.理解在推导积化和差、和差化积公式中方程思想、换元思想所起的作用.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 积化和差公式,根
人教A版高中数学必修四3.2 简单的三角恒等变换课件Tag内容描述:
1、3.3 三角函数的积化和差与和差化积,第三章 三角恒等变换,学习目标 1.了解利用两角和与差的正弦、余弦公式导出积化和差、和差化积两组公式的过程. 2.理解在推导积化和差、和差化积公式中方程思想、换元思想所起的作用.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 积化和差公式,根据两角和与差的正、余弦公式把下列等式补充完整. sin()sin() ; sin()sin() ; cos()cos() ; cos()cos() . 在上述四个等式两边同乘以 ,等号两端互换,就可以得出四个相应的积化和差公式.,2sin cos ,2cos sin ,2cos cos ,2sin sin ,梳理,积。
2、1.2.1 三角函数的定义,第一章 1.2 任意角的三角函数,学习目标 1.理解任意角的三角函数的定义. 2.掌握三角函数在各个象限的符号. 3.掌握正弦、余弦、正切函数的定义域.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 任意角的三角函数,角的正弦、余弦、正切分别等于什么?,答案,使锐角的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,作PMx轴于M,设P(x,y),|OP|r.,思考2,对确定的锐角,sin ,cos ,tan 的值是否随P点在终边上的位置的改变而改变?,答案,答案 不会.因为三角函数值是比值,其大小与点P(x。
3、1.3 三角函数的诱导公式(二),第一章 三角函数,学习目标 1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化简与证明问题. 2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与个性,培养由特殊到一般的数学推理意识和能力. 3.继续体会知识的“发生”“发现”过程,培养研究问题、发现问题、解决问题的能力.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 诱导公式五,由此可得诱导公式五,cos ,sin ,思考,知识点二 诱导公式六,能否利用已有公式得出 的正弦、余弦与角的正弦、余弦之间的关系?,答案,答案 以代替公。
4、1.2.2 同角三角函数的基本关系,第一章 1.2 任意角的三角函数,学习目标 1.能通过三角函数的定义推导出同角三角函数的基本关系式. 2.理解同角三角函数的基本关系式. 3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点 同角三角函数的基本关系式,计算下列式子的值: (1)sin230cos230; (2)sin245cos245; (3)sin290cos290. 由此你能得出什么结论?尝试证明它.,答案,答案 3个式子的值均为1. 由此可猜想: 对于任意角,有sin2cos21,下面用三角函数的定义证明: 。
5、1.2.1 任意角的三角函数(二),第一章 1.2 任意角的三角函数,学习目标 1.掌握正弦、余弦、正切函数的定义域. 2.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切. 3.能利用三角函数线解决一些简单的三角函数问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 三角函数的定义域,正切函数ytan x为什么规定xR且xk ,kZ?,答案,梳理,正弦函数ysin x的定义域是_;余弦函数ycos x的定义域是_; 正切函数ytan x的定义域是 .,x|xR且xk ,kZ,R,R,思考1,知识点二 三角函数线,在平面直角坐标系中,任意角的终边与单。
6、章末检测试卷(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1sin 53cos 23cos 53sin 23等于()A. BC D.答案A解析原式sin(5323)sin 30.2已知sin(45),则sin 2等于()A B C. D.答案B解析sin(45)(sin cos ),sin cos .两边平方,得1sin 2,sin 2.3ysinsin 2x的一个单调递增区间是()A. B.C. D.答案B解析ysinsin 2xsin 2xcoscos 2xsinsin 2xsin 2xcos 2xsin.ysin的单调递增区间是ysin的单调递减区间,令2k2x2k,k。
7、章末检测卷(三)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)1(cossin)(cossin)等于()A B C. D.答案D解析(cossin)(cossin)cos2sin2cos.2已知sin(45),则sin2等于()A B C. D.答案B解析sin(45)(sincos),sincos.两边平方,得1sin2,sin2.3ysinsin2x的一个单调递增区间是()A. B.C. D.答案B解析ysinsin2xsin2xcoscos2xsinsin2xsin2xcos2xsin.ysin的递增区间是ysin的递减区间,2k2x2k,kZ,kxk,kZ,。
8、章末复习课,第三章 三角恒等变换,学习目标 1.进一步掌握三角恒等变换的方法. 2.熟练应用正弦、余弦、正切的两角和与差公式与二倍角公式. 3.能对三角函数式进行化简、求值和证明,体会重要的数学思想方法.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.两角和与差的正弦、余弦、正切公式 cos() . cos() . sin() . sin() .tan() .tan() .,cos cos sin sin ,cos cos sin sin ,sin cos cos sin ,sin cos cos sin ,2.二倍角公式 sin 2 . cos 2 .tan 2 .,2s。
9、第五章 三角函数 5.55.5 三角恒等变换三角恒等变换 5.5.25.5.2 简单的三角恒等变换简单的三角恒等变换 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.能用二倍角公式导出半角公式,能用两角和与 差的。
10、章末复习课,第三章 三角恒等变换,学习目标 1.进一步掌握三角恒等变换的方法. 2.会运用正弦、余弦、正切的两角和与差公式与二倍角公式对三角函数式进行化简、求值和证明.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.两角和与差的正弦、余弦、正切公式 cos() . cos() . sin() . sin() .tan() .tan() .,cos cos sin sin ,cos cos sin sin ,sin cos cos sin ,sin cos cos sin ,2.二倍角公式 sin 2 . cos 2 .tan 2 .,2sin cos ,cos2si。
11、分层训练进阶冲关A 组 基础练(建议用时 20 分钟)1.(2018银川高一检测)已知 tan =2,且 ,则 cos 2=( C )A. B. C.- D.-2.若-20,所以 =2.又图象关于直线 x= 对称,所以2 +=k+ ,kZ,又- 0),xR.在曲线 y=f(x)与直线 y=1 的交点中,若相邻交点距离的最小值为 ,则 f(x)的最小正周期为 ( C )A. B. C. D.215.已知 tan(3-x)=2,则 = -3 . 16.已知函数 f(x)=Acos2(x+)+1 A0,0,00,m 0)的最小值为-2,且图象上相邻两个最高点的距离为 .(1)求 和 m 的值.(2)若 f = , ,求 f 的值.【解析】(1)易知 f(x)= sin(x+)( 为辅助角),所以 f(x)min=- =-2,又 m0,所以 m= .。
12、3.2 简单的三角恒等变换,第三章 三角恒等变换,学习目标 1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法. 2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法. 3.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 半角公式,我们知道倍角公式中,“倍角是相对的”,那么对余弦的二倍角公式,若用2替换,结果怎样?,答案,思考2,答案,思考3,答案,梳理,思考1,知识点二 辅助角公式,asin xbcos x化简的步。