4.34.3 等比数列等比数列 4 4. .3.13.1 等比数列的概念等比数列的概念 第第 1 1 课时课时 等比数列的概念及通项公式等比数列的概念及通项公式 学习目标 1.通过实例, 理解等比数列的概念.2.掌握等比中项的概念并会应用.3.掌握等比数 列的通项公式并了解其推导过程.4.灵活应用等
人教A版高中数学必修五2.4 等比数列二课件Tag内容描述:
1、4.34.3 等比数列等比数列 4 4. .3.13.1 等比数列的概念等比数列的概念 第第 1 1 课时课时 等比数列的概念及通项公式等比数列的概念及通项公式 学习目标 1.通过实例, 理解等比数列的概念.2.掌握等比中项的概念并会应用.3.掌握等比数 列的通项公式并了解其推导过程.4.灵活应用等比数列通项公式的推广形式及变形 知识点一 等比数列的概念 1定义:一般地,如果一个数列从第 2 项。
2、习题课 数列求和,第二章 数列,1.掌握分组分解求和法的使用情形和解题要点. 2.掌握奇偶并项求和法的使用情形和解题要点. 3.掌握裂项相消求和法的使用情形和解题要点. 4.进一步熟悉错位相减法,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 分组分解求和法,答案,分组分解求和的基本思路:通过分解每一项重新组合,化归为等差数列和等比数列求和,梳理,知识点二 奇偶并项求和法,122232429921002 (1222)(3242)(9921002) (12)(12)(34)(34)(99100)(99100) (123499100) 5 050.,思考,答案,求和122232429921002.,梳理,奇偶。
3、2.2 等差数列 2.2.1 等差数列(二),学习目标 1.能根据等差数列的定义推出等差数列的重要性质. 2.能运用等差数列的性质解决有关问题.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接 在等差数列an中,若已知首项a1和公差d的值,由通项公式ana1(n1)d可求出任意一项的值,如果已知am和公差d的值,有没有一个公式也能求任意一项的值?由等差数列的通项公式能得到等差数列的哪些性质?,预习导引 1.等差数列的图象 等差数列的通项公式ana1(n1)d,当d0时,an是关于n的常函数;当d0时,点(n。
4、4 4. .3.23.2 等比数列的前等比数列的前 n n 项和公式项和公式 第第 1 1 课时课时 等比数列前等比数列前 n n 项和公式项和公式 学习目标 1.掌握等比数列的前n项和公式及公式证明思路.2.会用等比数列的前n项和公式 解决有关等比数列的一些简单问题 知识点一 等比数列的前 n 项和公式 已知量 首项、公比与项数 首项、公比与末项 求和公式 Sn a11qn 1q q1,。
5、2.2 等差数列(二),第二章 数列,1.能根据等差数列的定义推出等差数列的常用性质. 2.能运用等差数列的性质解决有关问题,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 等差数列通项公式的推广,已知等差数列an的首项a1和公差d能表示出通项ana1(n1)d,如果已知第m项am和公差d,又如何表示通项an?,答案,设等差数列的首项为a1,则ama1(m1)d, 变形得a1am(m1)d, 则ana1(n1)dam(m1)d(n1)d am(nm)d.,等差数列通项公式可变形为andn(a1d),其图象为一条直线上孤立的一系列点,(1,a1),(n,an),(m,am)都是这条直线上的点。
6、第第 2 2 课时课时 等比数列的应用等比数列的应用及性质及性质 学习目标 1.理解复利计算方法, 能解决存款利息的有关计算方法.2.通过建立数列模型并应 用数列模型解决生活中的实际问题. 3.理解等比数列的常用性质.4.掌握等比数列的判断及证 明方法 知识点一 实际应用题常见的数列模型 1储蓄的复利公式:本金为 a 元,每期利率为 r,存期为 n 期,则本利和 y a(1r)n. 2总产值模型。
7、第一章 数列,1.3.2 等比数列的前n项和(一),1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列的前n项和公式的推导,对于S641248262263,用2乘以等式的两边可得2S64248262263264,对这两个式子作怎样的运算能解出S64?,答案,梳理,设等比数列an的首项是a1,公比是q,前n项和Sn可用下面的“错位相减法”求得. Sna1a1qa1q2a1qn1. 则qSna1qa1q2a1qn1a1qn. 由得(1q)Sna1a1qn.,知识点二 等比数列的前n项和公。
8、第一章 数列,1.3.2 等比数列的前n项和(二),1.熟练应用等比数列前n项和公式的有关性质解题. 2.会用错位相减法求和.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列前n项和公式的函数特征,若数列an的前n项和Sn2n1,那么数列an是不是等比数列? 若数列an的前n项和Sn2n11呢?,答案,梳理,当公比q1时,设A ,等比数列的前n项和公式是SnA(qn1). 当公比q1时,因为a10,所以Snna1,Sn是n的正比例函数.,知识点二 等比数列前n项和的性质,思考,若等比数列an的前n项和为Sn,则Sn,S2nSn,S3nS2n成等比数列吗?,答案,设。
9、2.3.3 等比数列的前n项和(二),第2章 2. 3 等比数列,1.熟练应用等比数列前n项和公式的有关性质解题. 2.应用方程的思想方法解决与等比数列前n项和有关的问题.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 等比数列的前n项和的变式,答案,na1,当公比q1时,因为a10,所以Snna1是n的正比例函数(常数项为0的一次函数).,答案,AqnA,思考 在数列an中,an1can(c为非零常数)且前n项和Sn3n1k,则实数k_.,答案, 1 3,解析 由题意知an是等比数列, 3n的系数与常数项互为相反数, 而3n的系数为 1。
10、2.3.2 等比数列的通项公式(二),第2章 2. 3 等比数列,1.灵活应用等比数列的定义及通项公式. 2.熟悉等比数列的有关性质. 3.系统了解判断是否成等比数列的方法.,学习目标,栏目索引,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,知识梳理 自主学习,知识点一 推广的等比数列的通项公式 an是等比数列,首项为a1,公比为q,则an ,an (m、nN*,mn). 思考1 如何推导anamqnm?,答案,a1qn1,amqnm,答案 根据等比数列的通项公式, ana1qn1, ama1qm1, an am qnm,anamqnm.,思考2 。
11、第二章 2.3 等比数列,2.3.2 等比数列的前n项和(一),学习目标 1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等比数列的前n项和公式,思考 对于S641248262263,用2乘以等式的两边可得2S64248262263264,对这两个式子作怎样的运算能解出S64?,答案 比较两式易知,两式相减能消去同类项,解出S64,,梳理 设等比数列an的首项是a1,公比是q,前n项和Sn可用下面的“错位相减法”求得. Sna1a1qa1q2a1qn1. 则qSna1qa1q2a1qn1a1qn。
12、第一章 数列,1.3.1 等比数列(二),1.灵活应用等比数列的定义及通项公式. 2.熟悉等比数列的有关性质. 3.系统了解判断数列是否成等比数列的方法.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 等比数列通项公式的推广,我们曾经把等差数列的通项公式做过如下变形:ana1(n1)dam(nm)d. 等比数列也有类似变形吗?,答案,思考2,我们知道等差数列的通项公式可以变形为andna1d,其单调性由公差的正负确定;等比数列的通项公式是否也可做类似变形?,答案,设等比数列an的首项为a1,公比为q. 则ana1qn1 qn,其形式类似于指数。
13、第二章 2.3 等比数列,2.3.2 等比数列的前n项和(二),学习目标 1.熟练应用等比数列的前n项和公式的有关性质解题. 2.会用错位相减法求和.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等比数列的前n项和公式的函数特征,思考 若数列an的前n项和Sn2n1,那么数列an是不是等比数列?若数列an的前n项和Sn2n+11呢?,答案 当Sn2n1时,,当Sn2n+11时,,当公比q1时,因为a10,所以Snna1,Sn是n的正比例函数.,知识点二 等比数列的前n项和的性质,思考 若等比数列an的前n项和为Sn,则Sn,S2nSn,S3nS2n成等比数列吗?,答案 设an的公比为q,则 。
14、第二章 2.3.1 等比数列,第1课时 等比数列的概念及通项公式,学习目标 1.理解等比数列的概念并学会简单应用. 2.掌握等比中项的概念并会应用. 3.掌握等比数列的通项公式并了解其推导过程.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 等比数列的概念,思考 观察下列4个数列,归纳它们的共同特点. 1,2,4,8,16,;,1,1,1,1,; 1,1,1,1,.,答案 从第2项起,每一项与它的前一项的比是同一个常数.,梳理 等比数列的概念和特点. (1)文字定义:如果一个数列从第 项起,每一项与它的 一项的 都等于 常数,那么这个数列叫做等比。
15、2.5 等比数列的前n项和(一),第二章 数列,1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列的前n项和公式的推导,对于S641248262263,用2乘以等式的两边可得2S64248262263264,对这两个式子作怎样的运算能解出S64?,答案,设等比数列an的首项是a1,公比是q,前n项和Sn可用下面的“错位相减法”求得 Sna1a1qa1q2a1qn1. 则qSna1qa1q2a1qn1a1qn. 由得(1q)Sna1a1qn.,梳理,当q1时,由于a1a2an,所以Snna1.,。
16、2.4 等比数列(二)课时目标1进一步巩固等比数列的定义和通项公式2掌握等比数列的性质,能用性质灵活解决问题1一般地,如果 m,n,k,l 为正整数,且 mnkl,则有 amana kal,特别地,当 mn2k 时, amana .2k2在等比数列a n中,每隔 k 项(kN *)取出一项,按原来的顺序排列,所得的新数列仍为等比数列3如果a n,b n均为等比数列,且公比分别为 q1,q 2,那么数列 ,a nbn, ,1an bnan|an|仍是等比数列,且公比分别为 ,q 1q2, ,|q 1|.1q1 q2q1一、选择题1在等比数列a n中,a 11,公比|q| 1.若 ama 1a2a3a4a5,则 m 等于( )A9 B10C11 D12答。
17、2.4 等比数列,第二章,第1课时 等比数列的概念与通项公式,1.还记得等差数列的定义吗?从_起,每一项与其前一项的差_的数列,称为等差数列 2等差数列的通项公式:_,是关于n的_ 3还记得指数型函数吗?_. 答案 1.第2项 等于同一个常数 2.ana1(n1)d 一次函数式 3.ycax(a0且a1),等比数列通项公式,等比数列的判定,等比中项,等比数列的应用题,构造等比数列的技巧,。
18、2.4 等比数列(一),第二章 数列,1.通过实例,理解等比数列的概念并学会简单应用. 2.掌握等比中项的概念并会应用. 3.掌握等比数列的通项公式并了解其推导过程,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 等比数列的概念,观察下列4个数列,归纳它们的共同特点 1,2,4,8,16,;,答案,从第2项起,每项与它的前一项的比是同一个常数,1,1,1,1,; 1,1,1,1,.,等比数列的概念和特点 (1)文字定义:如果一个数列从第 项起,每一项与它的 一项的_ 等于 常数,那么这个数列叫做等比数列,这个常数叫做等比数列的 。
19、2.4 等比数列(二),第二章 数列,1.灵活应用等比数列的定义及通项公式. 2.熟悉等比数列的有关性质. 3.系统了解判断数列是否成等比数列的方法,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 等比数列通项公式的推广,我们曾经把等差数列的通项公式做过如下变形: ana1(n1)dam(nm)d. 等比数列也有类似变形吗?,答案,思考2,我们知道等差数列的通项公式可以变形为andna1d,其单调性由公差的正负确定;等比数列的通项公式是否也可做类似变形?,设等比数列an的首项为a1,公比为q. 则ana1qn1 其形式类似于指数型函数,但q。