3.1 指数与指数函数 3.1.2 指数函数 第1课时 指数函数的图象及性质,学习目标 1.理解指数函数的概念和意义. 2.能借助计算器或计算机画出指数函数的图象. 3.初步掌握指数函数的有关性质.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功
人教A版高中数学必修一课件1.3.2 第1课时 奇偶性的概念Tag内容描述:
1、3.1 指数与指数函数 3.1.2 指数函数 第1课时 指数函数的图象及性质,学习目标 1.理解指数函数的概念和意义. 2.能借助计算器或计算机画出指数函数的图象. 3.初步掌握指数函数的有关性质.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接 1.aras ;(ar)s ;(ab)r . 其中a0,b0,r,sR. 2.在初中,我们知道有些细胞是这样分裂的:由1个分裂成2个,2个分裂成4个,.1个这样的细胞分裂x次后,第x次得到的细胞个数y与x之间构成的函数关系为 ,x0,1,2,.,y2x,ars,ars,arbr,预习导引 1.指数函。
2、第1课时 函数的表示法,第一章 1.2.2 函数的表示法,学习目标 1.了解函数的三种表示法及各自的优缺点. 2.掌握求函数解析式的常见方法. 3.尝试作图并从图象上获取有用的信息.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 解析法,一次函数如何表示?,答案,答案 ykxb(k0).,梳理,一般地,解析法是指:用 表示两个变量之间的对应关系.,数学表达式,思考,知识点二 图象法,要知道林黛玉长什么样,你觉得一个字的描述和一张二寸照片哪个更直观?,答案,答案 一图胜千言.,梳理,一般地,图象法是指:用 表示两个变量之间的对应关系;这。
3、第1课时 函数的单调性,第一章 1.3.1 单调性与最大(小)值,学习目标 1.理解函数单调区间、单调性等概念. 2.会划分函数的单调区间,判断单调性. 3.会用定义证明函数的单调性.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 函数的单调性,画出函数f(x)x、f(x)x2的图象,并指出f(x)x、f(x)x2的图象的升降情况如何?,答案,答案 两函数的图象如下:,函数f(x)x的图象由左到右是上升的;函数f(x)x2的图象在y轴左侧是下降的,在y轴右侧是上升的.,一般地,单调性是相对于区间来说的,函数图象在某区间上上升,则函数在该区间上为增函。
4、第五章 三角函数 5.45.4 三角函数的图象与性质三角函数的图象与性质 5.4.25.4.2 正弦函数余弦函数的性质正弦函数余弦函数的性质 第第1 1课时课时 周期性与奇偶性周期性与奇偶性 栏目导航栏目导航 栏目导航栏目导航 2 学 习 。
5、3.2 对数与对数函数 3.2.1 对数及其运算 第1课时 对数概念及常用对数,学习目标 1.理解对数的概念,掌握对数的基本性质. 2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接2.若2x8,则x ;若3x81,则x .,4,4,3,预习导引 1.对数 (1)定义:对于指数式abN,把“以a为底N的对数b”记作,即 ,其中,数a叫做对数的,N叫做 ,读作“ ”. (2)常用对数:当a10时,log10N记作 ,叫做常用对数. (3)对数恒等式: .,lg N,logaN,blogaN(。
6、第1课时 集合的含义,第一章 1.1.1 集合的含义与表示,学习目标 1.了解集合与元素的含义. 2.理解集合中元素的特征,并能利用它们进行解题. 3.理解集合与元素的关系. 4.掌握数学中一些常见的集合及其记法.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 集合的概念,有首歌中唱道“他大舅他二舅都是他舅”,在这句话中,谁是集合?谁是集合中的元素?,答案,答案 “某人的舅”是一个集合,“某人的大舅、二舅”都是这个集合中的元素.,元素与集合的概念 (1)把 统称为元素,通常用 表示. (2)把 叫做集合(简称为集),通常用_表示.,。
7、第三章 函数的概念与性质 3.23.2 函数的基本性质函数的基本性质 3.2.23.2.2 奇偶性奇偶性 第第2 2课时课时 奇偶性的应用奇偶性的应用 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.会根据函数奇。
8、2.1 函 数 2.1.1 函 数 第1课时 变量与函数的概念,学习目标 1.理解函数的概念,了解构成函数的三要素. 2.能正确使用区间表示数集. 3.会求一些简单函数的定义域、函数值.,1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接 1.在初中,学习过正比例函数、反比例函数、一次函数、二次函数等,它们的表达形式分别为 , , . 2.反比例函数y (k0)在x0时 .,无意义,ykx(k0),yaxb(a0),yax2bxc(a0),预习导引 1.函数 (1)函数的定义:设集合A是一个非空的数集,对A中的 ,按照确定的法则f,都有 。
9、第三章 函数的概念与性质 3.23.2 函数的基本性质函数的基本性质 3.2.23.2.2 奇偶性奇偶性 第第1 1课时课时 奇偶性的概念奇偶性的概念 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1理解奇函数偶函。
10、第 2 课时 奇偶性的应用课时目标 1.巩固函数奇偶性概念.2.能利用函数的单调性、奇偶性解决有关问题1定义在 R 上的奇函数,必有 f(0)_.2若奇函数 f(x)在a,b上是增函数,且有最大值 M,则 f(x)在b,a上是_函数,且有_3若偶函数 f(x)在(,0)上是减函数,则有 f(x)在(0,)上是_一、选择题1设偶函数 f(x)的定义域为 R,当 x0 ,)时 f(x)是增函数,则 f(2),f(),f(3)的大小关系是 ( )Af()f(3) f(2)Bf()f( 2)f(3)Cf()f(1)3设 f(x)是 R 上的偶函数,且在 (0,)上是减函数,若 x10,则( )Af(x 1)f(x 2)Bf(x 1)f( x 2)Cf(x 1)3,或 33,或 x0 时,。
11、第2课时 奇偶性的应用,第一章 1.3.2 奇偶性,学习目标 1.掌握用奇偶性求解析式的方法. 2.理解奇偶性对单调性的影响并能用以解不等式. 3.理解函数的奇偶性的推广对称性.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 用奇偶性求解析式,函数f(x)在区间a,b上的解析式与该区间函数图象上的点(x,y)有什么关系?,答案,答案 点(x,y)满足yf(x).,一般地,求解析式的任务就是要找到一个含有自变量因变量的等式,该等式同时满足两个条件: 定义域符合要求; 图象上任意一点均满足该式. 特别地,如果知道函数的奇偶性和一个区间a,b。
12、1.3.2 奇偶性第 1 课时 奇偶性的概念课时目标 1.结合具体函数,了解函数奇偶性的含义;2.掌握判断函数奇偶性的方法;3.了解函数奇偶性与图象的对称性之间的关系1函数奇偶性的概念(1)偶函数:如果对于函数 f(x)的定义域内_一个 x,都有_,那么函数f(x)就叫做偶函数(2)奇函数:如果对于函数 f(x)的定义域内_一个 x,都有_,那么函数f(x)就叫做奇函数2奇、偶函数的图象(1)偶函数的图象关于_对称(2)奇函数的图象关于_对称3判断函数奇偶性要注意定义域优先原则,即首先要看定义域是否关于原点对称一、选择题1已知 yf(x),x (a,a),F( x)f (x)f。
13、第1课时 奇偶性的概念,第一章 1.3.2 奇偶性,学习目标 1.理解函数奇偶性的定义. 2.掌握函数奇偶性的判断和证明方法. 3.会应用奇、偶函数图象的对称性解决简单问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 函数奇偶性的几何特征,下列函数图象中,关于y轴对称的有哪些?关于原点对称的呢?,答案,答案 关于y轴对称,关于原点对称.,一般地,图象关于y轴对称的函数称为 函数,图象关于原点对称的函数称为 函数.,梳理,奇,偶,思考1,知识点二 函数奇偶性的定义,为什么不直接用图象关于y轴(原点)对称来定义函数的奇偶性?,答。