欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

人教A版高中数学选修1-13.3.2函数的极值与导数课件

第1课时 函数的最值与导数,第四章 2.2 最大值、最小值问题,学习目标 1.理解函数最值的概念,了解其与函数极值的区别与联系. 2.会求某闭区间上函数的最值.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 函数的最大(小)值与导数,如图为yf(x),xa,b的图像.,思考1 观察a,b

人教A版高中数学选修1-13.3.2函数的极值与导数课件Tag内容描述:

1、第1课时 函数的最值与导数,第四章 2.2 最大值、最小值问题,学习目标 1.理解函数最值的概念,了解其与函数极值的区别与联系. 2.会求某闭区间上函数的最值.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 函数的最大(小)值与导数,如图为yf(x),xa,b的图像.,思考1 观察a,b上函数yf(x)的图像,试找出它的极大值、极小值.,答案 极大值为f(x1),f(x3),极小值为f(x2),f(x4).,思考2 结合图像判断,函数yf(x)在区间a,b上是否存在最大值,最小值?若存在,分别为多少?,答案 存在,f(x)minf(a),f(x)maxf(x3).,思考3 函数yf(x)在a,b上。

2、3.2 导数的计算3.2.1 几个常用函数的导数3.2.2 基本初等函数的导数公式及导数的运算法则(一)学习目标 1.能根据定义求函数 yc ,yx,yx 2,y ,y 的导数.2.能利1x x用给出的基本初等函数的导数公式求简单函数的导数.知识点 1 几个常用函数的导数原函数 导函数f(x)c f(x)0f(x)x f(x)1f(x)x 2 f(x)2xf(x)1xf(x)1x2f(x) xf(x)12x【预习评价】思考 根据上述五个公式,你能总结出函数 yx 的导数是什么吗?提示 yx 的导数是 yx 1 .知识点 2 基本初等函数的导数公式原函数 导函数f(x)c f(x)0f(x)x (Q *) f(x)x 1f(x) sin x f(x)cos_xf(x)cos x f(x。

3、3.2.2 基本初等函数的导数公式及导数的运算法则(二)学习目标 1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.知识点 导数运算法则法则 语言叙述f(x)g(x)f( x)g(x)两个函数的和(或差) 的导数,等于这两个函数的导数的和(或差)f(x)g(x)f(x)g(x)f( x)g(x)两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数f(x)g(x)f(x)g(x) f(x)g(x)g(x)2(g(x)0)两个函数的商的导数,等于分子的导数乘上分母减去分子乘上分母的。

4、3.1.1 变化率问题 3.1.2 导数的概念,第三章 3.1 变化率与导数,学习目标 1.了解导数概念的实际背景. 2.会求函数在某一点附近的平均变化率. 3.会利用导数的定义求函数在某点处的导数.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 函数yf(x)从x1到x2的平均变化率,假设如图是一座山的剖面示意图,并建立如图所示平面直角坐标系.A是出发点,H是山顶.爬山路线用函数yf(x)表示.,自变量x表示某旅游者的水平位置,函数值yf(x)表示此时旅游者所在的高度.设点A的坐标为(x1,y1),点B的坐标为(x2,y2).,思考1 若旅游者从点A爬到点B,自变。

5、1.3.2 函数的极值与导数,第一章 1.3 导数在研究函数中的应用,学习目标 1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用. 2.掌握函数极值的判定及求法. 3.掌握函数在某一点取得极值的条件.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 函数的极值点和极值,观察yf(x)的图象,指出其极大值点和极小值点及极值.,思考1,答案,答案 极大值点为e,g,i,极大值为f(e),f(g),f(i); 极小值点为d,f,h,极小值为f(d),f(f),f(h).,思考2,导数为0的点一定是极值点吗?,答案 不一定,如f(x)x3,尽管由。

6、第2课时 利用导数研究函数的最值,第三章 3.3.2 利用导数研究函数的极值,学习目标 1.理解函数最值的概念,了解其与函数极值的区别与联系. 2.会求某闭区间上函数的最值.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 函数的最值,如图为yf(x),xa,b的图象.,思考1 观察a,b上函数yf(x)的图象,试找出它的极大值、极小值.,答案 极大值为f(x1),f(x3),极小值为f(x2),f(x4).,思考2 结合图象判断,函数yf(x)在区间a,b上是否存在最大值,最小值?若存在,分别为多少?,答案 存在,f(x)minf(a),f(x)maxf(x3).,梳理 (1)函数f(x)在闭区。

7、3.3.3 函数的最大( 小)值与导数学习目标 1.理解函数最值的概念,了解其与函数极值的区别与联系.2.会求某闭区间上函数的最值.知识点 1 函数 f(x)在闭区间 a,b上的最值(1)函数 f(x)在闭区间a,b上的图象是一条连续不断的曲线,则该函数在a,b上一定能够取得最大值与最小值,函数的最值必在端点处或极值点处取得.(2)求函数 yf(x)在a,b上最值的步骤求函数 y f(x)在(a,b)内的极值.将函数 y f(x)的各极值与端点处的函数值 f(a), f(b)比较,其中最大的一个是最大值,最小的一个是最小值.【预习评价】函数 f(x) x3x 23x 6 在4,4 上的最大值为。

8、3.3 导数在研究函数中的应用3.3.1 函数的单调性与导数学习目标 1.结合实例,直观探索并掌握函数的单调性与导数的关系.2.能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.3.会求函数的单调区间(其中多项式函数一般不超过三次).知识点 1 函数的单调性与导数的关系(1)在区间(a,b)内函数的导数与单调性有如下关系:导数 函数的单调性f(x)0 单调递增f(x)0 的什么条件?提示 必要不充分条件.知识点 2 利用导数求函数的单调区间求可导函数单调区间的基本步骤:(1)确定定义域;(2)求导数 f(x);(3)解不等式 f(x)0,解集在定义。

9、1函数极值的概念若函数在点的函数值比它在点附近其他点的函数值都小,;而且在点附近的左侧_,右侧_,就把点叫做函数的极小值点,叫做函数的极小值若函数在点的函数值比它在点附近其他点的函数值都大,;而且在点附近的左侧_,右侧_,就把点叫做函数的极大值点,叫做函数的极大值极大值点和极小值点统称为极值点,极大值和极小值统称为极值2可导函数在某点处取得极值的必要条件和充分条件必要条件:可导函数在处取得极值的必要条件是_充分条件:可导函数在处取得极值的充分条件是在两侧异号3函数极值的求法一般地,求函数的极值的方法是:。

10、3.3.2 函数的极值与导数,第三章 3.3 导数在研究函数中的应用,学习目标 1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用. 2.掌握函数极值的判定及求法. 3.掌握函数在某一点取得极值的条件.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 极值点与极值的概念,思考 观察函数f(x) 2x的图象.,梳理 (1)极小值点与极小值 如图,函数yf(x)在点xa处的函数值f(a)比它在点xa附近其他点的函数值都小,f(a)0;而且在点xa附近的左侧 ,右侧,则把点a叫做函数yf(x)的极小值点,f(a)叫做函数yf(x)的极小值.,f(。

【人教A版高中数学选修1-13.3.2函数的极值与导数课件】相关PPT文档
北师大版高中数学选修1-1课件:4.2.2 第1课时 函数的最值与导数
人教A版高中数学选修1-1《3.1.1变化率问题_3.1.2导数的概念》课件
人教A版高中数学选修2-2课件:1.3.2 函数的极值与导数
2019年人教B版数学选修1-1课件:3.3.2 利用导数研究函数的极值(第2课时)
人教A版高中数学选修1-1《3.3.2函数的极值与导数》课件
【人教A版高中数学选修1-13.3.2函数的极值与导数课件】相关DOC文档
人教A版高中数学选修1-1学案:3.3.3 函数的最大(小)值与导数
人教A版高中数学选修1-1学案:3.3.1 函数的单调性与导数
专题3.3.2 函数的极值与导数-20届高中数学同步讲义(文)人教版(选修1-1)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开