第二章 一元二次方程 用配方法求解一元二次方程(二),Contents,目录,01,02,思路探究,复习回顾,实际应用,布置作业,问题解决,例题演示,上节课我们学习了配方法解一元二次方程的基本步骤:,例如, x2-6x-40=0 移项,得 x2-6x= 40 方程两边都加上32(一次项系数一半的平方
人教版九上数学一元二次方程复习课件共30张PPTTag内容描述:
1、第二章 一元二次方程 用配方法求解一元二次方程(二),Contents,目录,01,02,思路探究,复习回顾,实际应用,布置作业,问题解决,例题演示,上节课我们学习了配方法解一元二次方程的基本步骤:,例如, x2-6x-40=0 移项,得 x2-6x= 40 方程两边都加上32(一次项系数一半的平方),得x2-6x+32=40+32 即 (x-3)2=49 开平方,得 x-3 =7 即 x-3=7或x-3=-7 所以 x1=10,x2=-4,将下列各式填上适当的项,配成完全平方式(口头回答).,1.x2+2x+_=(x+_)2,5. x2-x+_=(x-_)2,4.x2+10x+_=(x+_)2,2.x2-4x+_=(x-_)2,3.x2+_+36=(x+_)2,抢答!,习题回望,请同学们比较。
2、22.2.5 一元二次方程的根与系数的关系,第22章 一元二次方程,驶向胜利的彼岸,1.一元二次方程的一般形式是什么?,3.一元二次方程的根的情况怎样确定?,2.一元二次方程的求根公式是什么?,复习导入,解下列方程,将得到的解填入下面的表格中,你发现表格中的两个解的和与积和原来的方程的系数有什么联系?,-4,0,2,2,0,1,-3,-4,2,3,5,6,探索新知,探索1一般地,对于关于x的方程x2+p x+q=0 (p、q为已知常数,p2-4q0),试用求根公式求出它的两个解x1、x2, 算一算x1+x2、x1、x2 的值,你能发现什么结论?与前面的观察的结果是否一致?,关于x的方。
3、22.2.4 一元二次方程根的判别式,第22章 一元二次方程,驶向胜利的彼岸,思考:一元二次方程ax2+bx+c=0的根有哪几种情况?,复习导入,一元二次方程 的根有三种情况: 有两个不相等的实数根; 有两个相等的实数根; 没有实数根而根的情况,由 的值来确定 因此 叫做一元二次方程的根的判别式,探索新知,0方程有两个不相等的实根 0方程有两个相等的实数根 0方程没有实数根,结论:,例1 不解方程,判别下列方程的根的情况:,掌握新知,解:,(1)a3,b-5,c2, 方程有两个不相等的实数根,(2)a4,b2,c , 方程有两个相等的实数解,(3)将方程化为一般形式。
4、第二章 一元二次方程 第6节 应用一元二次方程(一),Contents,目录,01,02,新知探究,情境导入,巩固练习,反思小结,布置作业,还记得本章开始时梯子下滑的问题吗?,在这个问题中,梯子顶端下滑1米时,梯子底端滑动的距离大于1米,那么梯子顶端下滑几米时,梯子底端滑动的距离和它相等呢?,如果梯子长度是13米,梯子顶端与地面的垂直距离为12m,那么梯子顶端下滑的距离与梯子底端滑动的距离可能相等吗?如果相等,那么这个距离是多少?,如图:某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小。
5、二次函数与一元二次方程,yx22x3,函数yx22x3的图象与x轴两个交点为(1,0) (3,0),方程x22x3 0的两根是x1 1 , x2 3,你发现了什么? (1)二次函数yax2bxc与x轴的交点的横坐标就是当y0时 一元二次方程ax2bxc0的根; (2)二次函数与x轴的交点问题可以转化为一元二次方程去解决.,探究一:图象与x轴的交点的坐标是什么?,例1. 求二次函数yx24x5的图象与x轴的交点坐标.解:令y0则x24x5 0解之得,x1 5 ,x2 1 二次函数yx24x5的图象与x轴的交点坐标为:(5,0)(1,0),结论一: 若一元二次方程ax2+bx+c=0的两个根是x1、x2, 则抛物线y=ax2+bx+。
6、22.1 一元二次方程,第22章 一元二次方程,驶向胜利的彼岸,什么是方程的解? 使方程左右两边相等的未知数的值,就叫做方程的解. 什么叫做一元一次方程? 只含有一个未知数,并且未知数的次数为“1”的整式方程,叫做一元一次方程.它的一般形式是:axb0(a,b为常数,a0),复习导入,绿苑小区规划设计时,准备在每两幢楼房之间,设置一块面积为900平方米的长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?,探索新知,问题1,我们已经知道可以运用方程解决实际问题 设长方形绿地的宽为x米,不难列出方程:,x(x+10)=900,整理得,x2+10x-900=0。
7、一元二次方程复习,一、知识导图,考点分析 1、期末分值23分,约占20% 2、题型分布选择题2题,填空题1题,解方程1题,实际问题1题; 3、选择、填空主要考查一元二次方程的解,根的判别式、根与系数的关系,求字母的取值范围,简易的列方程; 4、用公式法解方程; 5、实际应用,如增长率、面积、销售,(一)、定义、一般形式、判别式,1、 只含有一个未知数,未知数的最高次数是_的_式方程,叫做一元二次方程。 2、一般形式: . 3、使方程左右两边相等的_就是这个一元二次方程的解,也叫做一元二次方程的根,二次,整,ax2+bx+c=o (ao),考点一,未知数。