食堂中操场教学楼行政楼校门公寓教师宿舍7.2.1用坐标表示地理位置找家根据以下条件画一幅示意图,标出学校和小刚家、小强家、小敏家的位置。探究课前检测:1、点C在x轴上方,距离x轴5个单位长度,距离y轴2个单位长度,则点C的坐标为____2、点B(3-7)到x轴的距离是__到y轴的距离是__。3、8.
人教版七年级地理Tag内容描述:
1、5.1.2 垂线(1),问题1:如右图, (1)AOC的对顶角是哪个角?这两个角的关系怎样?,(2)AOC的邻补角有几个? 是哪几个角?,问题2:如下图,当AOC90时,BOD、AOD、BOC等于多少度?为什么?,在相交线的模型中,固定木条a,转动木条b,当 =90时,a与b垂直.,当b的位置变化时,a、b所成的角也会发生变化.,当 90时,a与b不垂直,叫斜交.,两条直线相交,斜交,垂直,垂直是相交的特殊情况,观察思考,),a,b,b,b,b,b,),1.垂直定义:当两条直线相交所成的四个角中,有一个角是直角(90)时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点。
2、5.1.1相交线,北京立交桥,相交线和平行线是我们日常生活和生产中经常见到的,研究它们对今后的学习、工作和生活都很有用。 这节课 我们先来研究相交线。,观察思考,?,当转动一木条的位置时,什么也随着发生了变化?,直线AB、CD相交于点O,如果两条直线有一个公共点,就说这两条直线相交,公共点叫做这两条直线的交点。,握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角也相应变小直到剪开布片。如果把剪刀的构造看作两条相交的直线,这就关系到两条相交直线所成的角的问题。,请你画出任意两条相交直线,用量角器量一量4个角的度数。
3、10.3 课题学习从数据谈节水,看了上面的图, 你有什么想法?,节约用水,从我做起.,阅读课本附录中的资料,从中收集数据,画出 统计图,并回答下列问题:(1)地球上的水资源和淡水资源分布情况如何?,其他 0.94%,(2)我国农业和工业耗水量情况怎样?,亿 立 方 米,(3)我国不同年份城市生活用水的变化趋势如何?,(4)根据国外的经验,一个国家的用水量超过其水资源总量的 20,就有可能发生“水危机”,依据这个标准,我国 2000 年是否出现“水危机”?,出现“水危机”.分析: 中国年水资源总量为2.75 104 亿立方米.而2000年我国用水量为工业。
4、10.3课题学习 从数据谈节水,美丽的水世界,美丽的水世界,缺水的现状,水被污染,水被污染,水被污染,浪费水的现象严重,阅读以下材料:,活动一,回答: (1)地球上的水资源和淡水资源分布情况怎样? (2)我国的农业和工业耗水情况怎样? (3)我国不同年份城市生活用水的变化趋势怎样? (4)根据国外的经验,一个国家的用水量超过其水资源总量的20%,就有可能发生”水危机”,依据这个标准,我国2000年是否曾出现过”水危机”?,地球上水的总量为14.2亿立方千米,地球上的水,单位:亿立方千米,单位:亿立方千米,全国不同年份主要城市生活用水情况,单位:万吨,全。
5、直方图,某班一次数学测试成绩如下:,63 84 53 69 81 68 75 82 87 75 67 74 67 95 53 89 82 67 65 70 72 67 65 85 80 69 83 98 94 81 78 69 88 91 78 85,复习,(1)其中最大数为 ,最小数为 , 最大数与最小数的差为 ; (2)把数据较合理地分为 组,则组 距为 .,为了研究800米赛跑后学生心率的分布情况,体育老师统计了全班同学一分钟时间脉搏的次数,并整理成下面的表格:,思考:从表上你可以看出哪些信息?,频数 (学生人数),频数分布直方图,引入,为了了解中学生的身体发育情况,对某 中学同龄的60名女生的身高进行了测量,结 果如下:(单位。
6、10.2直方图(一),1关于x的方程2x+3k=1的解是 负数, 求k的取值范围.,2.已知方程组,m为何值时,xy?,?,知识回顾,我们已经学习了用哪些方法来 描述数据?,条形图;折线图;扇形图.,各方法有什么特点?,三种统计图的特点:,复习回顾,你还记得各个统计图的特点吗?,课本 160页7.9.,为了参加全校各个年级之间的广播操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛为此收集到这63名同学的身高(单位:cm)如下:,问题1,选择身高在哪个范围内的学生参加呢? 若你是决策者,你打算怎么做呢?,问题1,选择身高在哪个范围内的学生。
7、10.1统计调查,问题:,你想知道我们班同学对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱 情况,你会怎么做?,需要调查统计,步骤一:收集数据,设计调查问卷,调查问卷 年 月 日,填写调查问卷,收集调查问卷,为了一定的目的而对考察对象进行的全面调查,称为普查.所要考察的对象的全体称为总体. 组成总体的每一个考察对象称为个体.,一天,爸爸叫儿子去买一盒火柴.临出门前,爸爸嘱咐儿子要买能划燃的火柴.儿子拿着钱出门了,过了好一会儿,儿子才回到家.“火柴能划燃吗?”爸爸问。“都能划燃.”“你这么肯定?”儿子递过一盒划过的火柴,。
8、10.1统计调查,问题1 如果要了解全班同学对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,你会怎样做?如何调查?,举手的方式,还有没有其他方法?,问卷的方式,问题1 如果要了解全班同学对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,你会怎样做?,某同学经调查,得到如下50个数据:,CCADBCADCD CEABDDBCCC DBDCDDDCDC EBBDDCCEBD ABDDCBCBDD,讨论:从上面的数据中,你能看出全 班同学喜爱各类节目的情况吗?怎样才能很清楚地看出全班同学喜爱各类节目的情况?,全班同学最喜爱节目的人数统计表,注:划记法是用“正”字的每。
9、8.3 实际问题与二元一次方程组,引入新课,探究1,养牛场原有30 只母牛和15只小牛,1天约需用饲料675kg;一周后又购进12只母牛和5只小牛,这时1天约需用饲料940kg.,探究新知,探究1,养牛场原有30 只母牛和15只小牛,1天约需用饲料675kg;一周后又购进12只母牛和5只小牛,这时1天约需用饲料940kg.,从调查中你获得了什么信息?,养牛场原有30 只母牛和15只小牛,1天约需用饲料675kg;一周后又购进12只母牛和5只小牛,这时1天约需用饲料940kg.,你能估计出平均每只母牛和每只小牛一天各需饲料多少千克吗?,探究新知,探究1,养牛场原有30 只母牛和15。
10、实际问题与二元一次方程组,例:2只大牛和1只小牛,1天需用饲料45 kg;21只大牛和10只小牛,1天需用饲料470 kg. 问一只大牛一只小牛每天各吃多少饲料? 3只大牛4只小牛每天吃多少饲料?,相等关系: (1)2只大牛1天所需饲料1只小牛1天所需饲料45千克; (2)21只大牛1天所需饲料10只小牛1天所需饲料470千克,2x+y=45 21x+10y=470,养牛场原有30只大牛和15只小牛,1天约需用饲料675 kg;一周后又购进12只大牛和5只小牛,这时1天约需要饲料940 kg饲养员李大叔估计平均每只大牛1天约需要饲料1820 kg,每只小牛1天约需要78 kg你能否通过计算检验。
11、7.1 平面直角坐标系,第七章 平面直角坐标系,回顾,我们可以怎样表示平面内一点的位置? 如何表示数轴上一点的位置?,数轴上的点A可以用-4来表示,-4对应数轴上的点A,那么就说点A的坐标是-4.,思考:能否把这两个问题结合起来,表示平面内一点的位置?,Ren Descartes,笛卡儿(15961650) 法国数学家,最早引入坐标系,用代数方法研究几何问题,把原本对立的“数”和“形”统一了起来.,我思,故我在。笛卡儿,I think, therefore I am.,笛卡儿怎样确定平面上点的位置?,一只苍蝇引发的灵感,平面直角坐标系,x,y,x轴或横轴,y轴或纵轴,原点,第一。
12、,要开家长会了,你的爸爸或妈妈要来参加,可是却不知道要坐在教室的哪个位置,那么这个时候你该怎么办呢?,情景引入,【问题2】数轴上点A和点B的坐标是什么?,【问题1】数轴的三要素是什么?,热身准备,【问题3】点C的坐标是5,点D的坐标是-2,请在数轴上画出点C和点D,.,.,C,D,热身准备,自主探究,课本66页第二段 自主阅读,尝试理解,找出重点,尝试概括,合作讨论,四人一组,合作学习 充分讨论,发表见解,尝试讲解,“小老师”讲新课 尝试在讲台上发言 讲多讲少没关系 讲对讲错也没关系,补充完善,原点,X轴或横轴,y轴或纵轴,1.平面内 2.两条数。
13、6.3 实数(1),复 习,你认识下列各数吗?,有理数是分类:,引入,把下列各数写成小数的形式:,整数和分数统称为有理数,有限小数,无限循环小数,有限小数和无限循环小数叫有理数,探究,把下列各数写成小数的形式:,无限不循环小数,无限不循环小数叫无理数,归纳,实数的分类,实数,有理数,无理数,整数,分数,有限小数或 无限循环小数,无限不循环小数,你还有其它分类方法吗?,(定义),归纳,实数的分类,实数,正实数,负实数,正有理数,正无理数,你知道怎样区分有理数和无理数吗?,0,负无理数,负有理数,(正负),范例,例1、下列各数中,哪些是有理数,哪 些是。
14、6.2立方根,现在要做一个体积为8cm3的立方体魔方,它的棱长要取多少?你是怎么知道的?,假如你是一名设计师.,设魔方的棱长为xcm,则,x3=8,这就是要求一个数,使它的立方等于8,因为 23=8,所以 x=2,即这个魔方的棱长为2cm.,新 知,读作“三次根号”;,读作“三次根号a”;,例如:, 5 是125 的立方根。,也可以说,125 的立方根是 5 。,用式子表示为:,注意: 的根指数 3 不能省略,要写在根 号的左上角,而且要写得小一些,不能写成,(1)27的立方根是多少?(2)-27的立方根是多少?(3)0的立方根是多少?,试一试,请你自已也编一道求立方根的题目,并给出。
15、立方根,现在要做一个体积为8cm3的立方体魔方,它的棱要取多少长?你是怎么知道的?,假如你是一个设计家.,新 知,一个数的立方等于a,这个数就叫做a的立方根,也叫做a的三次方根。也就是说,如果x=a,那么x叫做a的立方根,例如,a的立方根,记作“ ”,读作“三次根号a”。求一个数的开立方的运算叫做开立方。,(1)27的立方根是多少?(2)-27的立方根是多少?(3)0的立方根是多少?,试一试,请你自已也编三道求立方根的题目,并给出解答.,交 流,1)9的平方根的立方根是什么? 2)0的算术平方根的立方根是什么?0立方根有几个? 3)-64、-81、-33有立。
16、平方根复习,知识回顾(一),如果一个正数x的平方等于a,即x2a,那么这个正数x叫做a的算术平方根,1、算术平方根,记作:,如果一个数X的平方等于a,即X2=a, 那么这个数X叫做a的平方根(二次方根),2、平方根,a叫做被开方数,特别的规定:0的算术平方根是0,0 a0,记作:,(互为相反数),例1.求下列各式的求值:,平方根的性质:,正数有两个平方根,,它们互为相反数;,0的平方根是0;,负数没有平方根.,知识回顾(二),练习一:(自己完成) (1)1.44的平方根表示_=_.,(2)一个正数的平方等于169,这个正数是_.,(3)一个负数的平方等于121,这个负数是_。
17、,XX同学今年13岁,比老师年龄的 小5岁.老师今年多少岁?,设老师今年: 同学的年龄可以表示为: 同学的年龄: 相等关系: 列方程:,( x-5)岁,13岁,同学年龄=同学年龄,x-5=13,这个方程叫什么方 程?,仔细观察,说说这个方程的特征?,x岁,篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?,设 胜的场数: 则胜场积分: 负的场数: 则负场积分: 相等关系1:相等关系2:列方程1:列方程2:,胜的场数+负的场数=总场数,胜场积分+负场积分=总积。
18、8.1二元一次方程组,篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分某队在10场比赛中得到16分,那么这个队胜负分别是多少?你会用你学过的一元一次方程解决这个问题吗?,解法一:设胜x场,负(10-x)场,则,解法二:设胜x场,负y场,则,考考你:,方程中有哪些条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?,x+y=10,2x+y=16,2x+(10-x)=16,含有两个未知数(x和y),并且未知数的次数都是1,这样的方程叫做二元一次方程.,观察: x+y=10 2x+y=16 在未知数的个数和次数与方程x+(10-x)=16有什么不一样?,。
19、www.czsx.com.cn,课前检测: 1、点C在x轴上方,距离x轴5个单位长度,距离y轴2个单位长度,则点C的坐标为_ 2、点B(3,-7)到x轴的距离是_,到y轴的距离是_。 3、若点(a-4,a+1)在x轴上,则a的值是_,该点的坐标为_; 若点(a-4,a+1)在y轴上,则a的值是,该点的坐标为_. 4、若点P(-m,n)在第二象限,则点Q(m,-n)在第象限。 5、已知x轴上的点P到y轴的距离是5,则点P的坐标为_,www.czsx.com.cn,体 验 回 顾,1 什么叫做平移?,2 平移后得到的新图形与原图形有什么关系?,把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移。,平移。
20、,食堂,中操场,教学楼,行政楼,校门,公寓,教师宿舍,7.2.1,用坐标表示地理位置,找 家,根据以下条件画一幅示意图,标出学校和小刚家、小强家、小敏家的位置。,探究,50m,小强家,(150,200),(-10,350),校门,(300,-175),小敏家:出校门向南走100米,再向东走300米,最后向南走75米。,小刚家: 出校门向东走150米, 再向北走200米。,小强家:出校门向西走200米,再向北走350米,最后向东走50米,3、在坐标平面内画出这些点,写出各点的_和各个地点的名称. 练习 课本75页练习第一题,79页第五题,,归纳,1、建立坐标系,选择一个适当的参照点为_, 确。