1,15.2.2 分式的加减 (第1课时),2,1.掌握同分母的分式加减法的法则,能熟练地进行同分母的分式加减法的运算. 2.会把异分母的分式通分,转化成同分母的分式相加减. 3.在学习过程中体会类比思想的运用,学会知识的迁移.,3,问题1:甲工程队完成一项工程需n天,乙工程队要比甲队多用3天才能完
人教版数学八年级上15.1.2分式的基本性质第2课时课件Tag内容描述:
1、1,15.2.2 分式的加减 (第1课时),2,1.掌握同分母的分式加减法的法则,能熟练地进行同分母的分式加减法的运算. 2.会把异分母的分式通分,转化成同分母的分式相加减. 3.在学习过程中体会类比思想的运用,学会知识的迁移.,3,问题1:甲工程队完成一项工程需n天,乙工程队要比甲队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?,答:甲工程队一天完成这项工程的_, 乙工程队一天完成这项工程的_ , 两队共同工作一天完成这项工程的 _.,4,问题2:2010年,2011年,2012年某地的森林面积(单位:公顷)分别是S1,S2,S3,2012年与2011。
2、15.3 分式方程 (第2课时),2.能根据实际问题的意义检验所得的结果是否合理.,1.会列出分式方程解决简单的实际问题.,甲、乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间和乙做60个零件所用时间相等,求甲、乙每小时各做多少个零件?,解:设甲每小时做x个零件,则乙每小时做(x6)个零件, 依题意得:,经检验x=18是原分式方程的解,且符合题意.,答:甲每小时做18个,乙每小时12个.,请审题分析题意设元,我们所列的是一个分式方程,这是分式方程的应用,由x18得x6=12,解得:,列分式方程解应用题的一般步骤,1.审:分析题。
3、第五章 分 式,导入新课,讲授新课,当堂练习,课堂小结,5.1 认识分式,第2课时 分式的基本性质,北师大版八年级下册数学教学课件,1.理解并掌握分式的基本性质(重点) 2.会运用分式的基本性质进行分式的约分和通分(难点),导入新课,情境引入,分数的 基本性质,分数的分子与分母同时乘以(或除以)一个不等于零的数,分数的值不变.,2.这些分数相等的依据是什么?,1.把3个苹果平均分给6个同学,每个同学得到几个苹果?,讲授新课,思考:下列两式成立吗?为什么?,分数的分子与分母同时乘以(或除以)一个不等于0的数,分数的值不变.,分数的基本性。
4、15.2.2 分式的加减 (第2课时),2.能运用分式的运算解决实际问题.,1.掌握分式混合运算的顺序,能熟练地进行分式的混合运算.,1.分式的加减法则:,2.分式的乘除:,例1 在如图的电路中,已测定CAD支路的电阻是R1欧姆,又知 CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知 总电阻R与R1,R2满足关系式 ,试用含有R1的式 子表示总电阻R.,例2.计算:,【解析】,3.用两种方法计算:,=,解:(按运算顺序) 原式,=,(利用乘法分配律)原式,根据规划设计,某市工程队准备在开发区修建一条长 1 120m的盲道,由于采用新的施工方式,实际每天修建盲道 的长。
5、15.1.2 分式的基本性质 (第2课时),2、理解通分的概念和理论根据,会用分式的基本性质将分式通分 .,1、理解约分的概念和理论根据,会用分式的基本性质将分式约分 .,分数的约分与通分,1、约分: 约去分子与分母的最大公约数,化为最简分数. 2、通分: 先找分子与分母的最简公分母,再分子与分母同乘最简公分母,计算即可.,这一过程实际上是将分式中分子与分母的公因式约去.,把分式分子、分母的公因式约去,这种变形叫分式的约分.,分式约分的依据是什么?,分式的基本性质,观察下列化简过程,你能发现什么?,约分的步骤(1)约去系数的最大。