,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第3课时 利用方位角、坡度解直角三角形,1. 正确理解方向角、坡度的概念. (重点) 2. 能运用解直角三角形知识解决方向角、坡度的问题;能够掌握综合性较强的题型、融会贯通地运用相关的数学知识,进一步提高运用
人教版数学九年级下29.2.1三视图课件Tag内容描述:
1、,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第3课时 利用方位角、坡度解直角三角形,1. 正确理解方向角、坡度的概念. (重点) 2. 能运用解直角三角形知识解决方向角、坡度的问题;能够掌握综合性较强的题型、融会贯通地运用相关的数学知识,进一步提高运用解直角三角形知识分析解决问题的综合能力. (重点、难点),导入新课,以正南或正北方向为准,正南或正北方向线与目标方向线构成的小于90的角,叫做方位角. 如图所示:,方位角,北偏东30,南偏西45,复习引入,讲授新课,典例精析,例1 如图,一艘海轮位于。
2、,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第4课时 用计算器求锐角三角函数值及锐角,1. 会使用科学计算器求锐角的三角函数值. (重点) 2. 会根据锐角的三角函数值,借助科学计算器求锐角的大小. (重点) 3. 熟练运用计算器解决锐角三角函数中的问题. (难点),导入新课,复习引入,1,填写下表:,通过前面的学习,我们知道当锐角 A 是 30、 45、60等特殊角时,可以求得这些特殊角的锐角三角函数值;如果锐角 A 不是这些特殊角,怎样得到它的锐角三角函数值呢?,讲授新课,例1 (1) 用计算器求sin18的值;,。
3、27.2.1 相似三角形的判定,第二十七章 相 似,导入新课,讲授新课,当堂练习,课堂小结,第2课时 三边成比例的两个三角形相似,1. 复习已经学过的三角形相似的判定定理. 2. 掌握利用三边来判定两个三角形相似的方法,并能进行相关计算. (重点、难点),学习目标,2. 证明三角形全等有哪些方法?你能从中获得证明三角形相似的启发吗?,导入新课,1. 什么是相似三角形?在前面的课程中,我们学过哪 些判定三角形相似的方法?你认为这些方法是否有其缺点和局限性?,复习引入,3. 类似于判定三角形全等的 SSS 方法,我们能不能通 过三边来判定两个三角形相。
4、,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第1课时 解直角三角形的简单应用,1. 巩固解直角三角形相关知识. (重点) 2. 能从实际问题中构造直角三角形,从而把实际问 题转化为解直角三角形的问题,并能灵活选择三角函数解决问题(重点、难点),导入新课,情境引入,高跟鞋深受很多女性的喜爱,但有时候,如果鞋跟太高,也有可能“喜剧”变“悲剧”.,美国人体工程学研究人员卡特 克雷加文调查发现,70以上的女性喜欢穿鞋跟高度为6至7cm左右的高跟鞋. 但专家认为穿6cm以上的高跟鞋,腿肚、脚背等处的肌肉。
5、,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第2课时 利用仰俯角解直角三角形,1. 巩固解直角三角形有关知识. (重点) 2. 能运用解直角三角形知识解决仰角和俯角有关的实际问题,在解题过程中进一步体会数形结合、转化、方程的数学思想,并从这些问题中归纳出常见的基本模型及解题思路. (重点、难点),导入新课,某探险者某天到达如 图所示的点A 处时,他准 备估算出离他的目的地, 海拔为3 500 m的山峰顶点 B处的水平距离.他能想出 一个可行的办法吗?通过这节课的学习,相信你也行.,问题引入,讲授新课。
6、27.2 相似三角形,第二十七章 相 似,导入新课,讲授新课,当堂练习,课堂小结,27.2.2 相似三角形的性质,1. 理解并掌握相似三角形中对应线段的比等于相似比,并运用其解决问题. (重点、难点) 2. 理解相似三角形面积的比等于相似比的平方,并运用其解决问题. (重点),学习目标,导入新课,复习引入,1. 相似三角形的判定方法有哪几种?,定义:对应边成比例,对应角相等的两个三角 形相似,平行于三角形一边,与另外两边相交所构成的三角形与原三角形相似,三边成比例的两个三角形相似,两边成比例且夹角相等的两个三角形相似,两角分别相等的两个三角形。
7、,导入新课,讲授新课,当堂练习,课堂小结,28.2 解直角三角形及其应用,第二十八章 锐角三角函数,28.2.1 解直角三角形,1. 了解并掌握解直角三角形的概念; 2. 理解直角三角形中的五个元素之间的联系. (重点) 3. 学会解直角三角形. (难点),导入新课,(1) 三边之间的关系:a2+b2=_;,(2) 锐角之间的关系:A+B=_;,(3) 边角之间的关系:sinA=_,cosA=_,tanA=_.,如图,在RtABC中,共有六个元素(三条边,三个角), 其中C=90.,c2,90,复习引入,讲授新课,在图中的RtABC中, (1) 根据A75,斜边AB6,你能求出这个直角三角形的其他元素吗?,合作探究,75,。
8、,导入新课,讲授新课,当堂练习,课堂小结,28.1 锐角三角函数,第二十八章 锐角三角函数,第3课时 特殊角的三角函数值,1. 运用三角函数的知识,自主探索,推导出30、45、60角的三角函数值. (重点) 2. 熟记三个特殊锐角的三角函数值,并能准确地加 以运用. (难点),导入新课,复习引入,sin A =,cos A =,tan A =,1. 对于sin与tan,角度越大,函数值越 ;对于cos,角度越大,函数值越 .,2. 互余的两角之间的三角函数关系:若A+B=90,则sinA cosB,cosA sinB,tanA tanB = .,大,小,=,=,1,讲授新课,两块三角尺中有几个不同的锐角?分别求出这几个锐角。
9、,导入新课,讲授新课,当堂练习,课堂小结,32.2 视图,第2课时 较复杂几何体的三视图,第三十二章 投影与视图,1.会辨别复杂的几何体的三视图. (重点) 2.会画复杂的几何体的三视图.(重点) 3.明确三视图中实线和虚线的区别.(难点),学习目标,问题:请画出下面几何图形的三视图.,主视图,左视图,俯视图,导入新课,复习引入,画一画:画出下图的四棱柱的三视图.,解析:在画视图时,看得见部分的轮廓要画成实线,看不见部分的轮廓线要画成虚线.,主视图,左视图,俯视图,讲授新课,例1 画出如图所示的几何体的三视图,分析:该几何体由两个大小不等的长。
10、32.2 视 图,导入新课,讲授新课,当堂练习,课堂小结,第1课时 简单的几何体的三视图,第三十二章 投影与视图,学习目标,1.理解视图及三视图的概念. 2.会辨别几何体的三种视图,能熟练画出几何体的三种视图. (重点),导入新课,情境引入,“横看成岭侧成峰,远近高低各不同不识庐山真面目,只缘身在此山中”你能说明是什么原因吗?,问题:观察下面图形,假如有一束平形光从正面、左面、上面照射到物体上,请分别画出不同方向的正投影图形?,讲授新课,观察与思考,下图为某飞机的设计图,你能指出这些设计图是从哪几个方向来描绘物体的吗?,问题:怎样才。
11、,导入新课,讲授新课,当堂练习,课堂小结,32.2 视 图,第3课时 由三视图还原几何体,第三十二章 投影与视图,1进一步明确三视图的意义,由三视图想象出原型;(重点) 2由三视图得出实物原型并进行简单计算 (重点),学习目标,你认识它吗?,导入新课,情景引入,问题:如果要做一个水管的三叉接头,工人事先看到的不是图1,而是图2,你能替这位工人师傅根据这三个图形制造出水管接头吗? 若已知一个几何体的三视图,我们如何去想象这个几何体的原形结构,并画出其示意图呢?,图2,图1,问题1:下面所给的三视图表示什么几何体?,直四棱柱,讲授新课,问题2。
12、 20202020- -20212021 学年九年级数学学年九年级数学下册下册尖子生同步培优题典【尖子生同步培优题典【人教人教版】版】 专题专题 29.2 三视图三视图 姓名:_ 班级:_ 得分:_ 注意事项: 本试卷满分 100 分,试题共 24 题,其中选择 10 道、填空 8 道、解答 6 道答卷前。
13、题西林壁 苏轼 横看成岭侧成峰,远近高低各不同。 不识庐山真面目,只缘身在此山中。,29.2三视图,人 民 教 育 出 版 社,学习目标: 1、会从投影的角度理解视图的概念。 2、会画简单几何体的三视图 。 3、通过观察探究等活动,知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系。 重点:从投影的角度加深对三视图的理解和会画简单的三视图 。 难点:会画简单的三视图 。,自主探究,正面,水平面,侧面,合作探究交流展示,主视图,主视图,俯视图,左视图,正面,从上面看,从正面看,高,长,左视图,侧面,水平面,俯视图,合作探究交流展示。
14、,1,2,3,目录:,学习目标,三视图,巩固训练,课后小结,4,一、了解主视图、俯视图、左视图和三视图的概念;二、掌握各个视图之间的大小关系;三、能准确画出简单物体的三视图和还原立体图。四、培养学生识图认图的空间几何能力。,学习目标,横看成岭侧成峰,远近高低各不同。 不识庐山真面目,只缘身在此山中。苏轼,诗中说明了怎样一个数学道理?,新课引入,庐山,在生活中,我们应从不同角度,多方面地去看待一件事物,分析一件事情。,在数学中,我们可以从不同方向看同一物体,所以,每一物体都有多种图象。,6,你能指出这些图形分别从哪个角度。
15、第二十九章 投影与视图,导入新课,讲授新课,当堂练习,课堂小结,29.2 三视图,第3课时 由三视图确定几何体的面积或体积,1. 能熟练地画出物体的三视图和由三视图想象出物体形状,进一步提高空间想象能力. (难点) 2. 由三视图想象出立体图形后能进行简单的面积或体积的计算. (重点),学习目标,导入新课,如图所示是一个立体图形的三视图, (1) 请根据视图说出立体图形的名称,并画出它的展开图.,(2) 请指出三视图、立体图形、展开图之间的对应边.,复习引入,讲授新课,分析: 1. 应先由三视图想象出; 2. 画出物体的 .,密封罐的立体形状,展开图,例1。
16、29.2 三视图 第1课时,1、会画简单几何体的三视图; 2、知道物体的三视图与正投影的相互关系及三视图的位置关系、大小关系.,1.什么叫投影? 一般地,用 照射物体,在 上得到的影子叫做物体的投影.,2.投影的分类: 由 形成的投影是平行投影(例如太阳光,探照灯光) 由 形成的投影是中心投影(例如灯泡).,光线,某个平面,平行光线,点光源发出的光线,你能指出这些图形分别从哪个角度观察得到的吗?,你能指出这些图形分别从哪个角度观察得到的吗?,从正面看,从侧面看,从上面看,飞机模型,当我们从某一个角度观察一个物体时,所看到的图象叫做物体的一个视。
17、29.2 三视图 第2课时,1、进一步明确正投影与三视图的关系; 2、经历探索简单立体图形的三视图的画法,能识别物体的三视图.,根据如图右边的椅子的视图,工人就能制造出符合设计要求的椅子.,由于三视图不仅反映了 物体的形状,而且反映了各个 方向的尺寸大小,设计人员可以把自己构思的创造物用三视图表示出来,再由工人制造出符合各种要求的机器、工具、生活用品等,因此三视图在许多行业有着广泛的应用.,前面我们讨论了由立体图形(实物)画出三视图,下面我们讨论由三视图想象出立体图形(实物),【例1】根据三视图说出立体图形的名称,【分析。
18、第二十九章 投影与视图,导入新课,讲授新课,当堂练习,课堂小结,29.2 三视图,第2课时 由三视图确定几何体,1. 会根据物体的三视图描述出基本几何体的形状. (重点) 2. 会根据复杂的三视图判断实物原型. (难点),学习目标,导入新课,C,B,D,下面是哪个几何体的三视图?,问题引入,主视图 左视图 俯视图,我们知道,由几何体可以画出三视图,反过来,能否由三视图还原几何体呢?,讲授新课,例1 如图,分别根据三视图(1) (2)说出立体图形的名称.,典例精析,(1) 从三个方向看立体图形,视图都是矩形,可以想象出:整体是 ,如图所示;,(2) 从正面、侧面看。
19、29.2 三视图,第二十九章 投影与视图,导入新课,讲授新课,当堂练习,课堂小结,第1课时 三视图,1. 会从投影的角度理解视图的概念,明确视图与投影的关系. 2. 能识别物体的三视图,会画简单几何体的三视图. (重点、难点),学习目标,导入新课,情境引入,“横看成岭侧成峰,远近高低各不同不识庐山真面目,只缘身在此山中”你能说明是什么原因吗?,讲授新课,观察与思考,下图为某飞机的设计图,你能指出这些设计图是从哪几个方向来描绘物体的吗?,当我们从某一方向观察一个物体时,所看到的图形叫做物体的一个视图视图也可以看作物体在某一个方向的光。