欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

三角恒等万能公式

回扣回扣3三角函数三角函数、、三角恒等变换与解三角形三角恒等变换与解三角形1.终边相同角的表示所有与角终边相同的角,连同角在内,可构成一个集合S|k第2课时简单的三角恒等变换题型一三角函数式的化简1化简:.答案2cos解析原式2cos.2化简:.答案cos2第2课时简单的三角恒等变换题型一三角函数式

三角恒等万能公式Tag内容描述:

1、章末复习1同角三角函数的基本关系sin2cos21,tan .2两角和与差的正弦、余弦、正切公式cos()cos cos sin sin .cos()cos cos sin sin .sin()sin cos cos sin .sin()sin cos cos sin .tan().tan().3二倍角公式sin 22sin cos .cos 2cos2sin22cos2112sin2.tan 2.4升幂公式1cos 22cos2.1cos 22sin2.5降幂公式cos2x,sin2x.6和差角正切公式变形tan tan tan()(1tan tan ),tan tan tan()(1tan tan )7辅助角公式yasin xbcos xsin(x).题。

2、 三角恒等变换高考考点 命题分析 三年高考探源 考查频率利用两角和与差的公式与二倍角公式化简求值2018 课标全国152018 课标全国42016 课标全国9三角恒等变换的综合应用单独考查三角变换的题目较少,往往以解三角形为背景,在应用正弦定理、余弦定理的同时,应用三角恒等变换进行化简,综合性比较强,但难度不大.也可能与三角函数等其他知识相结合.2017 课标全国172016 课标全国132016 课标全国17考点 1 利用两角和与差的公式与二倍角公式化简求值题组一 利用两角和与差的正、余弦公式化简求值调研 1 若 ,且 ,则 的值为31cos22sin2A B 49。

3、三角恒等变换与解三角形(1)两角和(差)的正弦、余弦及正切是 C 级要求,二倍角的正弦、余弦及正切是 B 级要求,应用时要适当选择公式,灵活应用(2)正弦定理、余弦定理及其应用,要求是 B 级,能够应用定理实现三角形中边和角的转化,以及应用定理解决实际问题试题类型一般是填空题,同时在解答题中与三角函数、向量等综合考查,构成中档题.【重点、难点剖析】来源:ZXXK1两角和与差 的正弦、余弦、正切公式(1)sin()sin cos cos sin .(2)cos()cos cos sin sin .来源:Z。xx。k.Com(3)tan() .tan tan 1tan tan 2二倍角的正弦、余弦、正切公 式(。

4、三角恒等变换与解三角形1 tan 70tan 50 tan 70tan 50的值为( )3A. B. C D333 33 32在ABC 中,若原点到直线 xsin Aysin Bs in C0 的距离为 1,则此三角形为( )A直角三角形 B锐角三角形C钝角三角形 D不能确定3在ABC 中,角 A,B,C 的对边分别为 a,b ,c ,acos Bbcos A2 ccos C,c ,且7ABC 的面积为 ,则ABC 的周长为( ) 来332A1 B2 来源:Zxxk.Com7 7C 4 D57 74已知 为锐角,则 2tan 的最小值为( )3tan 2A1 B2 C. D.2 35已知 2sin 1cos ,则 tan 等于( )A 或 0 B. 或 043 43C D.43 436在锐角ABC 中,内角 A,B,C 的对边分别为 a,b , c。

5、三角恒等变换跟踪知识梳理考纲解读:1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的恒等 变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)考点梳理:1. 两角和与差的三角函数公式的应用两角和与差的正弦、余弦、正切公式C() : cos()coscos sin sin;C() : cos()coscos_ si n_sin;S() :sin()sincoscos sin;S()。

6、3.2 简单的三角恒等变换,第三章 三角恒等变换,学习目标 1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法. 2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法. 3.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 半角公式,我们知道倍角公式中,“倍角是相对的”,那么对余弦的二倍角公式,若用2替换,结果怎样?,答案,思考2,答案,思考3,答案,梳理,思考1,知识点二 辅助角公式,asin xbcos x化简的步。

7、【考向解读】 正弦定理和余弦定理以及解三角形问题是高考的必考内容,1.和差角公式、二倍角公式是高考的热点,常与三角函数式的求值、化简交汇命题既有选择题、填空题,又有解答题,难度适中,主要考查公式的灵活运用及三角恒等变换能力2.预测高考仍将以和差角公式及二倍角公式为主要考点,复习时应引起足够的重视3.边和角的计算;4.三角形形状的判断;5.面积的计算;6.有关的范围问题 【命题热点突破一】三角恒等变换例 1、 (2018 年全国 III 卷)若 ,则A . B. C. D. 【答案】B 【解析】 ,故答案为 B.【变式探究】 【2017 山东,文 7。

8、1已知 ,sin ,则 tan ( )(2,) 513 ( 4)A B717 177C D717 177【解析】因为 ,所以 cos ,所以 tan ,所以 tan (2,) 1213 512 ( 4)tan tan 41 tan tan 4 ,故选 C. 512 11 512 717【答案】C2ABC 的角 A,B ,C 所对的边分别是 a,b,c,若 cos A ,ca2,b3,则 a( )78A2 B. C3 D.52 72【解析】由余弦定理可知,a 2b 2c 22bccos Aa 29 (a2) 223(a2) a2,故选 A.78【答案】A3已知 ,tan ,那么 sin 2cos 2 的值为( )(4,2) (2 4) 17A B.15 75C D.75 34【答案】A4.在ABC 中,内角 A,。

9、人教 A 版必修 4 第三章三角恒等变换检测题一、选择题1.在 中, ,则 ( )BC35sin,cos1BcosCA. 或 B. 或 C. D. 16566152.设 , , ,则 的大小关系是( 00sin4cos1a00sin1cosb62c,abc)A. B. C. D. bab3. 设函数 ( 为常实数)在区间 上的最小值为2cos3infxxa0,2,则 的值等于( )4aA. 4 B. -6 C. -3 D. -44.已知 ,若 的任意一条对称轴与 轴的交点横1sincos(,)4fxxRfxx坐标都不属于区间 ,则 的取值范围是( )2,3A. B. C. D. 3。

10、考点规范练 21 三角恒等变换一、基础巩固1.已知 sin 2= ,则 cos2 =( )13 (-4)A.- B. C.- D.13 13 23 232.已知 2sin 2=1+cos 2,则 tan 2=( )A. B.-43 43C. 或 0 D.- 或 043 433.已知 f(x)=sin2x+sin xcos x,则 f(x)的最小正周期和一个单调递增区间分别为 ( )A.,0, B.2,-4,34C., D.2,-8,38 -4,44.(2018 全国 ,理 10)若 f(x)=cos x-sin x 在 -a,a上是减函数,则 a 的最大值是( )A. B. C. D.4 2 345.已知 为锐角,若 cos ,则 sin 的值为( )(+6)=45 (2+12)A. B. C. D.17250 17350 13350 2256.为了得到函数 y=sin 2x+cos 2x 的图象,可以将函数 y=c。

11、3.3几个三角恒等式一、选择题1已知cos ,则sin 等于()A. B C. D.答案A解析,sin .2已知180360,则cos 的值等于()A B. C D. 答案C3设acos 6sin 6,b2sin 13cos 13,c,则有()Acba BabcCacb Dbca答案C解析asin 30cos 6cos 30sin 6sin(306)sin 24,b2sin 13cos 13sin 26,csin 25,ysin x在上是单调递增的,acb.4已知等腰三角形的。

12、章末检测(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若sin ,则cos 2()A. B. C. D.解析cos 212sin212.答案B2.函数f(x)sin xcos xcos 2x的振幅是()A. B. C.1 D.2解析f(x)sin 2xcos 2xsin,所以振幅A1.答案C3.若ABC的内角A满足sin 2A,则sin Acos A()A. B. C. D.解析sin 2A2sin Acos A0,cos A0.sin Acos A0,sin Acos A.答案A4.已知3sin xcos x2sin(x),其中(,),则实数的值是()A. B. C. D.解析因为3sin xcos x。

13、3.3几个三角恒等式基础过关1.的值为()A.1 B. C. D.1解析因为sin()sin cos cos sin ,sin()sin cos cos sin ,两式相加得sin()sin()2sin cos ,所以.答案C2.sin2 20cos2 50sin 20cos 50的值为()A. B. C. D.解析法一原式(sin 70sin 30)1(cos 100cos 40)sin 70sin 70sin 30sin 70.法二原式sin2 20sin2 40sin 20sin 40(sin 20sin 40)2sin 20sin 404。

14、章末复习一、网络构建二、要点归纳1两角和与差的正弦、余弦、正切公式cos()cos cos sin sin .cos()cos cos sin sin .sin()sin cos cos sin .sin()sin cos cos sin .tan().tan().2二倍角公式sin 22sin cos .cos 2cos2sin22cos2112sin2.tan 2.3升幂公式1cos 22cos2.1cos 22sin2.4降幂公式sin xcos x,cos2x,sin2x.5和差角正切公式变形tan tan tan()(1tan tan ),tan tan tan()(1tan tan )6辅助角公式yasin xbcos xsin(x)7积化和差公式s。

15、3.3几个三角恒等式学习目标1.理解积化和差、和差化积、万能公式的推导过程.2.掌握积化和差、和差化积、万能公式的结构特征.3.能利用所学三角公式进行三角恒等变换知识点一积化和差与和差化积公式1积化和差公式sin cos sin()sin()cos sin sin()sin()cos cos cos()cos()sin sin cos()cos()2和差化积公式sin sin 2sin cos.sin sin 2cossin.cos cos 2coscos.cos cos 2sinsin.知识点二万能代换公式1sin .2cos .3tan .知识点三半角公式1sin .2cos.3tan .特别提醒:(1)半角公式中,根号前面的符号由所在的象限相应的三角。

16、高中数学考点14 三角恒等变换1掌握两角和与两角差的正弦、余弦、正切公式,掌握正弦、余弦、正切二倍角的公式.2掌握简单的三角函数式的化简、求值及恒等式证明.一、两角和与差的三角函数公式1两角和与差的正弦、余弦、正切公式(1):(2):(3):(4):(5):(6):2二倍角公式(1):(2):(3):3公式的常用变形(1);(2)降幂公式:;(3)升幂公式:;(4)辅助角公式:,其中,二、简单的三角恒等变换1半角公式(1)(2)(3)【注】此公式不用死记硬背,可由二倍角公式推导而来,如下图:2公式的常见变形(和差化积、积化。

17、第2课时简单的三角恒等变换题型一三角函数式的化简1化简:_.答案2cos解析原式2cos .2化简:_.答案cos2x解析原式cos2x.3化简:2cos()解原式.思维升华 (1)三角函数式的化简要遵循“三看”原则:一看角,二看名,三看式子结构与特征(2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点题型二三角函数的求值命题点1给角求值与给值求值例1(1)2sin50sin10(1tan10)_.答案解析原式sin80cos102sin 50cos 10sin 10cos(6010)2sin(50。

18、第2课时简单的三角恒等变换题型一三角函数式的化简1化简: .答案2cos 解析原式2cos .2化简: .答案cos 2x解析原式cos 2x.3化简:2cos()解原式.思维升华 (1)三角函数式的化简要遵循“三看”原则一看角,二看名,三看式子结构与特征(2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点题型二三角函数的求值命题点1给角求值与给值求值例1 (1)(2018阜新质检)2sin 50sin 10(1tan 10) .答案解析原式sin 80cos 102sin 50cos 10sin 10cos(60&#。

19、回扣回扣 3 三角函数三角函数、三角恒等变换与解三角形三角恒等变换与解三角形 1.终边相同角的表示 所有与角 终边相同的角,连同角 在内,可构成一个集合 S|k 360 ,kZ,即 任一与角 终边相同的角,都可以表示成角 与整数个周角的和. 2.几种特殊位置的角的集合 (1)终边在 x 轴非负半轴上的角的集合:|k 360 ,kZ. (2)终边在 x 轴非正半轴上的角的集合:|180 k 360 ,kZ. (3)终边在 x 轴上的角的集合:|k 180 ,kZ. (4)终边在 y 轴上的角的集合:|90 k 180 ,kZ. (5)终边在坐标轴上的角的集合:|k 90 ,kZ. (6)终边在 yx 上的角的集合:|45。

【三角恒等万能公式】相关PPT文档
人教A版高中数学必修四《3.2 简单的三角恒等变换》课件
【三角恒等万能公式】相关DOC文档
第三章三角恒等变形 章末复习学案(含答案)
2019年高考数学解密题(含解析)之三角恒等变换
2019年高考数学教师版(含解析)之三角恒等变换与解三角形
2019年高考数学(含解析)之三角恒等变换与解三角形
2019年高考数学(含解析)之三角恒等变换(跟踪知识梳理)
2019年高考数学文科第二伦专题:三角恒等变换与解三角形(命题猜想)
2019年高考数学文科第二伦专题:三角恒等变换与解三角形(仿真押题)
人教A版数学必修4《第三章三角恒等变换》检测题(含答案解析)
2020高考数学(天津专用)一轮考点规范练21:三角恒等变换(含解析)
《3.3 几个三角恒等式》课时对点练(含答案)
第3章 三角恒等变换 章末检测试卷(含答案)
《3.3 几个三角恒等式》同步练习(含答案)
第3章 三角恒等变换 章末复习学案(含答案)
3.3 几个三角恒等式 学案(含答案)
高中数学考点14三角恒等变换
高三数学二轮复习三角函数、三角恒等变换与解三角形
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开