等腰三角形与直角三角形 第1讲 适用学科 初中数学 适用年级 初中二年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1.等腰三角形判定与性质 2.直角三角形判定与性质 教学目标 1.理解等腰三角形的判定定理,并会运用其进行简单的证明 2.能够证明直角三角形全等的“HL”的判定定理,进
三角形复习课教案Tag内容描述:
1、 等腰三角形与直角三角形 第1讲 适用学科 初中数学 适用年级 初中二年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1.等腰三角形判定与性质 2.直角三角形判定与性质 教学目标 1.理解等腰三角形的判定定理,并会运用其进行简单的证明 2.能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性 教学重点 特殊三角形的灵活应用 教学难点 特殊三角形的灵活应。
2、,课时25 等腰三角形与直角三角形,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 等腰三角形 (1)概念及分类: _的三角形叫等腰三角形;_的三角形叫做等边三角形,也叫正三角形;等腰三角形分为_的等腰三角形和_的等腰三角形 (2)等腰三角形的性质: 等腰三角形两腰相等;等腰三角形的两个底角_ 等腰三角形的顶角角平分线、底边上的中线和高互相_,简称“三线合一” 等腰(非等边)三角形是轴对称图形,它有一条对称轴 等腰三角形边长须满足两腰之和大于底;等腰三角形的底角满足090;顶角满足0180. (3)等腰三角形的判定。
3、第 5 课时 全等三角形基础达标训练1. 如图,BE90,ABDE ,AC DF ,则ABC DEF 的理由是( )A. SAS B.ASA C. AAS D.HL第 1 题图2. (2018 贵州三州联考)下列各图中 a、b、c 为三角形的边长,则甲、乙、丙三个三角形和左侧ABC 全等的是( )第 2 题图A. 甲和乙 B.乙和丙 C. 甲和丙 D.只有丙3. (2018 成都) 如图,已知ABCDCB,添加以下条件,不能判定ABCDCB 的是( )A. AD B. ACBDBC C. ACDB D.ABDC第 3 题图4. (2018 柳州模拟)如图,ABCEBD,E50, D62,则ABC 的度数是( )A. 68 B.62 C. 60 D.50第 4。
4、第 6 课时 相似三角形基础达标训练1. 已知 ,那么 的值为( )ab 13 aa bA. B. C. D.13 23 14 342. (2017 张家界)如图,D,E 分别是ABC 的边 AB,AC 上的中点,如果ADE 的周长是6,则ABC 的周长是( )A. 6 B.12 C. 18 D.24第 2 题图3. (2018 重庆 A 卷) 要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为 5 cm,6 cm 和 9 cm,另一个三角形的最短边长为 2.5 cm,则它的最长边为( )A. 3 cm B.4 cm C. 4.5 cm D.5 cm4. (2018 长春) 孙子算经是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得。
5、,第3课时 全等三角形,考点突破,3,中考特训,4,广东中考,5,课前小测,C,第1题图,课前小测,A,2(2019安顺) 如图, 点B、F、C、E在一条直 线上,ABED,ACFD, 那么添加下列一个条件 第2题图 后,仍无法判定ABCDEF的是( ) AAD BACDF CABED DBFEC,课前小测,3如图,已知在四边形ABCD中,BCD90, BD平分ABC,AB6,BC9,CD4,则四边形 ABCD的面积是_,30,课前小测,4如图,D是AB上一点,DF交AC于点E,DE FE,FCAB,若AB4,CF3,则BD的长是 _ 第4题图,1,课前小测,5如图,12,34,求证:ACAD.,知识精点,知识点一:三角形全等的判定和性质,1全等图形:能够。
6、,第4课时 特殊三角形,考点突破,3,中考特训,4,广东中考,5,课前小测,D,1在ABC中,BC,AB5,则AC的长为( ) A2 B3 C4 D5 2等腰三角形的一个角是80,则它顶角的 度数是( ) A80 B80或20 C80或50 D20,B,课前小测,D,课前小测,2,4如图,在ABC中,ACB90,点D、E、F分别是AB、BC、CA的中点若CD2,则线段EF的长是_ 第4题图,课前小测,5如图,在RtABC中,BAC90,点D为BC边中点,且ABD为等边三角形,若AB2,求ABC的周长(结果保留根号) 第5题图,知识精点,知识点一:等腰三角形与等边三角形,知识精点,3,知识精点,知识点二:直角三角形,1直角三角形的性质与。
7、4.7解三角形的实际应用考情考向分析以利用正弦定理、余弦定理测量距离、高度、角度等实际问题为主,常与三角恒等变换、三角函数的性质结合考查,加强数学知识的应用性题型主要为填空题或解答题,中档难度测量中的有关几个术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角方位角的范围是0360方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)。
8、中考总复习:全等三角形巩固练习【巩固练习】一、选择题1如图,ABC是不等边三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所画的三角形与ABC全等,这样的三角形最多可画出( ) .A.2个 B.4个 C.6个 D.8个2如图,RtABC中,BAC=90,AB=AC,D为AC的中点,AEBD交BC于E,若BDE=,ADB的大小是( )A B C D3如图,ABC中,C为钝角,CF为AB上的中线,BE为AC上的高,若CF=BE,则ACF的大小是( ).A45 B60 C30 D不确定4如图,ABC中,BAC=90 ADBC,AE平分BAC,B=2C,DAE的度数是( ) .A. 45 B. 20 C. 30 D.。
9、4.7 相似三角形的性质相似三角形的性质 第第 1 课时课时 相似三角形中的对应线段之比相似三角形中的对应线段之比 1.明确相似三角形对应高的比、对应角平分线的比和对应中线的比与相似比的关系; (重点) 2.能熟练运用相似三角形的性质解决实际问题.(难点) 一、情景导入 在前面我们学习了相似多边形的性质,知道相似多边形的对应角相等,对应边成比例,相似三 角形是相似多边形中的一种,因此三对对应角。
10、第 24 课时 全等三角形 教学目标:教学目标:通过复习,查缺补漏,发展学生直观想象、逻辑推理能力,提高综合应试水平. 复习重点:复习重点:三角形全等的判定 复习策略:复习策略:以题带知识点,基础过关,变式提升,分层要求,配套课件 教学过程: 教学过程: 例1.已知:如图,ABCEBD,则EBC 的度数是( A ) 70DBE o 110DBA o A.30 o B.35 o C. 40o。
11、第 29 课时 相似三角形 教学目标教学目标:通过复习,查缺补漏,发展学生直观想象与逻辑揄能力,提高综合应试水平. 复习重点复习重点:相似三角形的判定 复习策略复习策略:以题带知识点,基础过关,变式提升,分层要求,配套课件 教学过程教学过程: 例1.如图,已知ADEABC,且6AD =,4AE =,12AB =,求CD的长. 知识点:相似三角形的对应角相等 ,对应边成比例;相似三角形对。
12、等腰、等边三角形、直角三角形等腰、等边三角形、直角三角形 (知识点总结(知识点总结+ +例题讲解)例题讲解) 一、等腰三角形及其性质:一、等腰三角形及其性质: 1.定义:两边相等的三角形叫做等腰三角形,其中相等的两条边叫腰; 第三条边叫底边,两腰的夹角叫顶角,底边和腰的夹角叫底角。 2.2.等腰三角形的性质:等腰三角形的性质: (1)等腰三角形的性质定理及推论: 定理:等腰三角形的两个底角相等等腰。
13、2018 初三数学中考复习 三角形与全等三角形 专题复习训练题 1. 三角形的内角和等于( ) A90 B180 C300 D360 2. 在ABC 中,若A95,B40,则C 的度数为( ) A35 B40 C45 D50 3. 在ABC 中,AB3,BC4,AC2,D,E,F 分别为 AB,BC,AC 中点,连接 DF,FE,则四边形 DBEF的周长是( &am。
14、专题三专题三 三角函数与解三角形三角函数与解三角形 第二编 讲专题 第第2 2讲讲 三角恒等变换与解三角形三角恒等变换与解三角形 考情研析 三角恒等变换和利用正弦定理、余弦定理解三角形问题 是高考的必考内容.1.三角恒等变换主要考查:两角和与差的正弦、余弦、 正切公式;二倍角公式、半角公式的应用;辅助角公式的应用 2.解 三角形问题主要考查:边和角的计算;三角形形状的判断;面积的计 算;有关参数。
15、第 23 课时 三角形 教学目标:教学目标:通过复习,查缺补漏,发展学生直观想象、逻辑推理能力,提高综合应试水平. 复习重点:复习重点:三角形的内角和 复习策略:复习策略:以题带知识点,基础过关,变式提升,分层要求,配套课件 教学过程: 教学过程: 例1.下列长度的三条线段,能组成三角形的是( D ) A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10 知识点:三角形两边的和大于第。
16、百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲。
17、,课时24 三角形与全等三角形,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 三角形的概念与分类 (1)由三条线段_所围成的平面图形,叫做三角形 (2)三角形按边可分为:_三角形和_三角形;按角可分为_三角形、_三角形和_三角形 2. 三角形的性质 (1)三角形的内角和是_,三角形的外角等于与它_的两个内角的和,三角形的外角大于任何一个和它不相邻的内角 (2)三角形的两边之和_第三边,两边之差_第三边 3. 三角形中的重要线段 (1)角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的_三角形的。
18、4.6 利用相似三角形测高利用相似三角形测高 1.通过测量旗杆的高度的活动,巩固相似三角形有关知识,积累数学活动的经验; (重点) 2.灵活运用三角形相似的知识解决实际问题.(难点) 一、情景导入 胡夫金字塔是埃及现存规模最大的金字塔,被誉为“世界古代八大奇迹之一” ,古希腊数学家、 天文学家泰勒斯曾经利用相似三角形的原理测量金字塔的高度. 你能根据图示说出他测量金字塔的原理吗? 二、合作。
19、第14课时 三角形与全等三角形,考点梳理,自主测试,考点一 三角形的有关概念 1.三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形. 2.分类,考点梳理,自主测试,考点二 三角形的性质 1.三角形的三边关系:三角形任意两边的和大于第三边;任意两边的差小于第三边. 2.三角形的外角及其外角和 (1)外角:三角形的一边与另一边的延长线组成的角. (2)外角和:三角形的外角和是360. 3.三角形的内角和定理及推理 (1)三角形的内角和定理:三角形的内角和等于180. (2)推论:三角形的任何一个外角等于和它不相邻的两个内角的和;三角形的一个外角大。
20、第四章 三角形,第18讲 等腰三角形、等边三角形、直角三角形,01,02,03,04,目录导航,课 前 预 习,80,22,B,C,A,D,9或1,考 点 梳 理,垂直平分线,三,60,一半,中线,直角,一半,课 堂 精 讲,B,65,37,50或20或80,A,C,3,A,(1,0),往年 中 考,A,。