2三角形分类 项目 内容 1.我们学过哪些角? 2.我们戴的红领巾是()三角形。 3.拿出你剪下来的教材附页3中图1的三角形进行分类,并说说你的分类方法。 分析与解答:(1)我们观察这些三角形的角,发现有些三角形的三个角都是锐角,这类三角形就是()三角形;有些三角形有一个直角,这类三角形就是()三角
三角形SSSTag内容描述:
1、2三角形分类项目内容1.我们学过哪些角?2.我们戴的红领巾是()三角形。3.拿出你剪下来的教材附页3中图1的三角形进行分类,并说说你的分类方法。分析与解答:(1)我们观察这些三角形的角,发现有些三角形的三个角都是锐角,这类三角形就是()三角形;有些三角形有一个直角,这类三角形就是()三角形;有些三角形有一个钝角,这类三角形就是()三角形。(2)我们观察这些三角形的边,发现有些三角形的三条边都相等,这类三角形就是()三角形;有些三角形的两条边相等,这类三角形就是()三角形。4.通过预习,我知道了三角形按角可以分为()三角形、()三角形和()三角。
2、7.3 三角形的内角和,1,学习目标,1.组织学生通过量、剪、拼等实践活动,发现、验证三角形的内角和是180,并能运用这一知识解决生活中简单的实际问题。 2.让学生经历探究三角形的内角和的过程,培养学生的创新意识、探究精神和实践能力,渗透“转化”的数学思想。 3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。,2,情境导入,猜谜语,形状像座山, 稳定性能坚, 三竿首尾连, 奥秘大无边。,3,汇报已知:,你知道哪些有关三角形的知识呢?和大家说说:,4,探究新知,5,算一算,三角形的内角和是多少度呢?,三角尺,6,7,量一量,请同学们剪下书。
3、 1、确定一个圆的位置与大小的条件是什么?、确定一个圆的位置与大小的条件是什么? 圆心与半径圆心与半径 2、叙述角平分线的性质与判定、叙述角平分线的性质与判定 性质:角平分线上的点到这个角的两边的距离相等性质:角平分线上的点到这个角的两边的距离相等. 判定:到这个角的两边距离相等的点在这个角的平分线上判定:到这个角的两边距离相等的点在这个角的平分线上. 3、下图中、下图中ABC与圆与圆O的关系?的。
4、4.6 利用相似三角形测高利用相似三角形测高 1.通过测量旗杆的高度的活动,巩固相似三角形有关知识,积累数学活动的经验; (重点) 2.灵活运用三角形相似的知识解决实际问题.(难点) 一、情景导入 胡夫金字塔是埃及现存规模最大的金字塔,被誉为“世界古代八大奇迹之一” ,古希腊数学家、 天文学家泰勒斯曾经利用相似三角形的原理测量金字塔的高度. 你能根据图示说出他测量金字塔的原理吗? 二、合作。
5、,苏科数学,7.4 认识三角形(2),将橡皮筋的一端固定在ABC的顶点A上,另一端从点B出发沿BC方向移动,在这个过程中,橡皮筋(线段)的位置不断变化,你认为其中有哪些位置是特殊的?请与同学交流,问题情境,如右图所示,取ABC边BC的中点D,连结AD,线段AD就是ABC的一条中线;也称AD为边BC上的中线,在三角形中,连接一个顶点与它对边中点的线段,叫做三角形的中线,ABD与ACD的面积之间有什么关系?,1.三角形的中线,数学活动,(2)观察这3条中线有什么特点?与同伴进行交流.,(1)在纸上画任意一个三角形,并画出它每条边上的中线,数学活动,三角。
6、第第 11 讲讲 特殊三角形之直角三角形特殊三角形之直角三角形 有一个角是直角的三角形叫做直角三角形, 这是初中阶段研究的一个特殊三角形, 它的性质 和判定是常考内容,也是解决初中几何问题的常用手段 一直角三角形 1. 直角三角形的性质: 。
7、2018 初三数学中考复习 三角形与全等三角形 专题复习训练题 1. 三角形的内角和等于( ) A90 B180 C300 D360 2. 在ABC 中,若A95,B40,则C 的度数为( ) A35 B40 C45 D50 3. 在ABC 中,AB3,BC4,AC2,D,E,F 分别为 AB,BC,AC 中点,连接 DF,FE,则四边形 DBEF的周长是( &am。
8、2020中考数学 专题练习:等腰三角形与直角三角形(含答案)1已知等腰三角形的一个内角为40,则这个等腰三角形的顶角为()A40 B100C40或100 D70或502已知实数x,y满足|x4|0,则以x,y的值为两边长的等腰三角形的周长是()A20或16 B20C16 D以上答案均不对 3如图14所示,ABC中,ACADBD,DAC80,则B的度数是()A40 B35 C25 D20图14图154如图15,在平面直角坐标系中,点P的坐标为(2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A4和3之间 B3和4之间C5和4之间 D4和5之间5如图16,在ABC中,C90,EFAB,150,则B的。
9、等腰、等边三角形、直角三角形等腰、等边三角形、直角三角形 (知识点总结(知识点总结+ +例题讲解)例题讲解) 一、等腰三角形及其性质:一、等腰三角形及其性质: 1.定义:两边相等的三角形叫做等腰三角形,其中相等的两条边叫腰; 第三条边叫底边,两腰的夹角叫顶角,底边和腰的夹角叫底角。 2.2.等腰三角形的性质:等腰三角形的性质: (1)等腰三角形的性质定理及推论: 定理:等腰三角形的两个底角相等等腰。
10、一、 选择题1、 (2018 北京市丰台区初二期末)如图,已知射线 OM以 O 为圆心,任意长为半径画弧,与射线 OM 交于点 A,再以点 A 为圆心 , AO 长为半径画弧,两弧交于点 B,画射线OB,那么AOB 的度数是A90 B60 C45 D30答案:B2 (2018 北京市海淀区八年级期末)等腰三角形的一个角是 70,它的底角的大小为A70 B40 C70 或 40 D70或 55答案:D3 ( 2018 北京市石景山区初二期末) 等腰三角形的一个外角是 100,则它的顶角的度数为A80 B80或 20 C20 D80或 50 答案:B4 (2018 北京市顺义区八年级期末)已知等腰三角形的两边长分别为 和 ,则。
11、2020年中考数学试题分类汇编之九 三角形 1、 选择题 3.(2020北京)如图,AB和CD相交于点O,则下列结论正确的是( ) A.1=2 B.2=3 C.14+5 D.25 【解析】由两直线相交,对顶角相等可知A正确;由三角形的一个外角等于它不相邻的两个内角的和可知B选项的23,C选项1=4+5,D选项的25.故选A. 4(2020广州)ABC中,点D,E分别是ABC的边AB,A。
12、,认识三角形,情境导入,探究新知,课堂小结,课后作业,三角形,课堂练习,5,1,情境导入,返回,探究新知,返回,返回,由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。,返回,你画的三角形有几条边?几个角?几个顶点?在图上标出来。,边,边,边,角,角,角,顶点,顶点,顶点,三角形有3条边,3个角,3个顶点。,返回,如果用字母A、B、C分别表示三角形的三个顶点。这个三角形可以表示成三角形ABC。,C,B,三角形ABC,A,返回,哪个是正确的?,返回,从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角。
13、,认识三角形,情境导入,探究新知,课堂小结,课后作业,三角形、平行四边形和梯形,课堂练习,7,1,画一个三角形,并说说三角形有什么特点?,你能在图中找出三角形吗?生活中还有哪些地方能见到三角形?,情境导入,返回,这3条线段要首尾相接地围起来。,三角形有3条边,3个角。,三角形的 3条边都是线段。,三条线段首尾相接围成的图形叫作三角形。,三角形有几个顶点?分别指出三角形的3个顶点、3 条边和 3个角。,探究新知,返回,右边的方格纸上有4个点。 从这4个点中任选3个作为顶点, 都能画一个三角形吗?你有什么发现?,三个点在同一直线上时无法画。
14、,苏科数学,1.2 全等三角形,问题情境,1观察:生活中能够完全重合的两个图形很多, 观察2个完全相同的信封你能找出其中的全等图形吗?,2思考:如图,将ABC沿直线BC平移得DEF; 将ABC沿BC翻折得到DBC; 将ABC旋转180得到AED,寻找上图中两三角形的对应元素, 它们的对应边有什么关系?对应角有什么关系?,数学概念,1全等三角形的概念: 能够完全重合的2个三角形是全等三角形,2 全等三角形的性质: 全等三角形的对应边,对应角相等.,用符号语言可以表述为: ABCDEF, AD,BE,CF, ABDE,BCEF,ACDF,例题讲解,1若ABCDEF, 写出这两个三角形的相。
15、专题三专题三 三角函数与解三角形三角函数与解三角形 第二编 讲专题 第第2 2讲讲 三角恒等变换与解三角形三角恒等变换与解三角形 考情研析 三角恒等变换和利用正弦定理、余弦定理解三角形问题 是高考的必考内容.1.三角恒等变换主要考查:两角和与差的正弦、余弦、 正切公式;二倍角公式、半角公式的应用;辅助角公式的应用 2.解 三角形问题主要考查:边和角的计算;三角形形状的判断;面积的计 算;有关参数。
16、第14课时 三角形与全等三角形,考点梳理,自主测试,考点一 三角形的有关概念 1.三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形. 2.分类,考点梳理,自主测试,考点二 三角形的性质 1.三角形的三边关系:三角形任意两边的和大于第三边;任意两边的差小于第三边. 2.三角形的外角及其外角和 (1)外角:三角形的一边与另一边的延长线组成的角. (2)外角和:三角形的外角和是360. 3.三角形的内角和定理及推理 (1)三角形的内角和定理:三角形的内角和等于180. (2)推论:三角形的任何一个外角等于和它不相邻的两个内角的和;三角形的一个外角大。
17、7.5 等腰三角形和等边三角形一、填空。1. 一个三角形的一个内角的度数是108,这个三角形是( )三角形;一个三角形三条边的长度分别为7厘米、8厘米、7厘米,这个三角形是( )三角形。2. 一个三角形两个内角的度数分别为35、67,另一个内角的度数是( ),这是一个( )三角形。3. 等腰三角形的底角是75,顶角是( ),等边三角形的每个内角都是( )。4. 在一个直角三角形中,一个锐角是75,另一个锐角是( )。5. 一个等腰三角形的一条腰长5厘米,底边长4厘米,围成这个等腰三角形至少需要( )厘米长的绳子。二、判断。(对的画“”,。
18、,课时24 三角形与全等三角形,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 三角形的概念与分类 (1)由三条线段_所围成的平面图形,叫做三角形 (2)三角形按边可分为:_三角形和_三角形;按角可分为_三角形、_三角形和_三角形 2. 三角形的性质 (1)三角形的内角和是_,三角形的外角等于与它_的两个内角的和,三角形的外角大于任何一个和它不相邻的内角 (2)三角形的两边之和_第三边,两边之差_第三边 3. 三角形中的重要线段 (1)角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的_三角形的。
19、,等腰三角形和等边三角形,情境导入,探究新知,课堂小结,课后作业,三角形、平行四边形和梯形,课堂练习,7,1,量一量下面三角形每条边的长度,看看这些三角形有什么共同的特点。,两条边相等的三角形是等腰三角形。,上面等腰三角形的顶角和底角分别在哪里?指一指。,情境导入,返回,等腰三角形的底角相等。,等腰三角形底边上的高在它的对称轴上。,等腰三角形是轴对称图形。,探究新知,等腰三角形还有哪些特征?,返回,量一量,下面三角形3条边的长度都相等吗?,3条边都相等的三角形是等边三角形,也叫作正三角形。,你会像下面这样剪出一个等边三角形。
20、第四章 三角形,第18讲 等腰三角形、等边三角形、直角三角形,01,02,03,04,目录导航,课 前 预 习,80,22,B,C,A,D,9或1,考 点 梳 理,垂直平分线,三,60,一半,中线,直角,一半,课 堂 精 讲,B,65,37,50或20或80,A,C,3,A,(1,0),往年 中 考,A,。