,第2讲 三角恒等变换与解三角形(小题),板块二 专题一 三角函数、三角恒等变换与解三角形,NEIRONGSUOYIN,内容索引,热点分类突破,真题押题精练,1,PART ONE,热点一 三角恒等变换,热点二 利用正弦、余弦定理解三角形,热点三 正弦、余弦定理的实际应用,热点一 三角恒等变换,1.三
数学理科高三二轮复习系列Tag内容描述:
1、,第2讲 三角恒等变换与解三角形(小题),板块二 专题一 三角函数、三角恒等变换与解三角形,NEIRONGSUOYIN,内容索引,热点分类突破,真题押题精练,1,PART ONE,热点一 三角恒等变换,热点二 利用正弦、余弦定理解三角形,热点三 正弦、余弦定理的实际应用,热点一 三角恒等变换,1.三角求值“三大类型” “给角求值”“给值求值”“给值求角”. 2.三角恒等变换“四大策略” (1)常值代换:常用到“1”的代换,1sin2cos2tan 45等. (2)项的拆分与角的配凑:如sin22cos2(sin2cos2)cos2,()等. (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (。
2、,第2讲 概率与统计(大题),板块二 专题四 概率与统计,NEIRONGSUOYIN,内容索引,热点分类突破,真题押题精练,1,PART ONE,热点一 以二项分布为背景的期望与方差,热点二 以超几何分布为背景的期望与方差,热点三 统计与统计案例的交汇问题,热点一 以二项分布为背景的期望与方差,利用二项分布解题的一般步骤: (1)根据题意设出随机变量. (2)分析随机变量服从二项分布. (3)找到参数n,p. (4)写出二项分布的概率表达式. (5)求解相关概率.,例1 (2019怀化模拟)在全国第五个“扶贫日”到来之际,某省开展“精准脱贫,携手同行”的主题活动,某贫困县调。
3、,第2讲 立体几何(大题),板块二 专题三 立体几何与空间向量,NEIRONGSUOYIN,内容索引,热点分类突破,真题押题精练,1,PART ONE,热点一 平行、垂直关系的证明,热点二 利用空间向量求空间角,热点三 利用空间向量解决探索性问题,热点一 平行、垂直关系的证明,用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线ab,只需证明向量ab(R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.,例1 。
4、,概率与统计,板块二 专题四 规范答题示例4,典例4 (12分)(2019全国)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1分;若施以乙药的白鼠治愈且施以。