第 2 课时 函数的单调性与最值学习目标 1.理解函数的最大(小)值的概念及其几何意义(难点);2.会借助单调性求最值(重点) ;3.掌握求二次函数在闭区间上的最值(重点)预习教材 P3940,完成下面问题:知识点一 函数的最大(小)值设 yf(x) 的定义域为 A,如果存在 x0A,使得对于任意
苏教版高中数学必修1学案3.4.1第1课时函数的零点Tag内容描述:
1、第 2 课时 函数的单调性与最值学习目标 1.理解函数的最大(小)值的概念及其几何意义(难点);2.会借助单调性求最值(重点) ;3.掌握求二次函数在闭区间上的最值(重点)预习教材 P3940,完成下面问题:知识点一 函数的最大(小)值设 yf(x) 的定义域为 A,如果存在 x0A,使得对于任意 xA,都有 f(x)f (x0)(f(x) f(x0)恒成立,那么称 f(x0)为 yf(x )的最大(小)值,记为 ymaxf( x0)(yminf (x0)【预习评价】思考 1 任何函数都有最大(小)值吗?提示 不一定函数的最值首先是一个函数值,它是值域的一个元素若仅有对定义域内的任意实数 x,都有 f(x)M,。
2、第 2 课时 指数函数及其性质的应用学习目标 1.会用指数函数模型刻画和解决简单的实际问题(难点);2.会解 af(x)a g(x)型的指数方程(重点);3.掌握与指数函数复合的函数单调性解决方法(重、难点); 4.了解与指数函数有关的函数奇偶性的判断方法(重点)预习教材 P6869,完成下面问题:知识点一 指数型函数 yk ax(kR 且 k0,a0 且 a1)模型1指数增长模型设原有量为 N,每次的增长率为 p,经过 x 次增长,该量增长到 y,则yN(1p) x(xN)2指数减少模型设原有量为 N,每次的减少率为 p,经过 x 次减少,该量减少到 y,则yN(1p) x(xN)【预习评价】由。
3、第 2 课时 用二分法求方程的近似解学习目标 1.能用二分法求出方程的近似解(重点);2.知道二分法是求方程近似解的一种常用方法,体会“逐步逼近”的思想(难点)预习教材 P9396,完成下面问题:知识点一 二分法的定义对于在区间a,b 上连续不断且 f(a)f(b)0 的函数 yf (x),通过不断地把函数f(x)的零点所在的区间一分为二 ,使区间的两个端点逐步逼近 零点,进而得到零点近似值的方法叫做二分法【预习评价】下列关于二分法的叙述,正确的是_(填序号)用二分法可求所有函数零点的近似值;用二分法求方程的近似解时,可以精确到小数点后的任一位。
4、第 2 课时 函数的图象和值域学习目标 1.会画一些简单函数的图象(重点);2.求一些简单函数的值域(重、难点)预习教材 P2530,完成下面问题:知识点一 函数图象的概念将自变量的一个值 x0 作为 横坐标,相应的函数值 f(x0)作为纵坐标,就得到坐标平面上的一个点(x 0,f(x 0)当自变量取遍函数定义域 A 中的每一个值时,就得到一系列这样的点,所有这些点组成的集合(点集)为( x,y)|yf(x),xA ,所有这些点组成的图形就是函数 yf(x )的图象【预习评价】下列图形中,不可能是函数 yf(x )的图象的是_解析 由函数定义知,一个 x 只能对应一个 y 值。
5、32.2 对数函数第 1 课时 对数函数的概念及性质学习目标 1.理解对数函数的概念(重、难点);2.掌握对数函数的性质及简单应用(重点 );3. 掌握对数函数图象及简单的图象变换(重、难点)预习教材 P8185,完成下面问题:知识点一 对数函数的概念一般地,函数 ylog ax(a0,且 a1)叫做对数函数,其中 x 是自变量,函数的定义域是(0,) 【预习评价】若对数 log3a(2a1) 有意义,则 a 的取值范围是_解析 根据题意可得Error!解得 0a ,a .所以 a 的取值范围是(0, )( , )12 13 13 13 12答案 (0 , )( , )13 13 12知识点二 对数函数的图象与性质类似。
6、21 函数的概念21.1 函数的概念和图象第 1 课时 函数的概念和定义域学习目标 1.理解函数的概念(难点);2.了解构成函数的要素(重点);3.会求一些简单函数的定义域和函数值(重点)预习教材 P2325 的例 2,完成下面问题:知识点一 函数的概念设 A,B 是两个非空的数集,如果按某种对应法则 f,对于集合 A 中的每一个元素 x,在集合 B 中都有唯一的元素 y 和它对应,那么这样的对应叫做从 A 到 B的一个函数,通常记为 yf(x ),xA.其中,所有的输入值 x 组成的集合 A 叫做函数 yf(x)的定义域【预习评价】试用函数的定义判断下列对应是不是函数?(。
7、第1课时 函数的零点,第3章 3.4.1 函数与方程,1.理解函数零点的定义,会求函数的零点. 2.掌握函数零点的判定方法. 3.了解函数的零点与方程的根的联系.,学习目标,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,栏目索引,知识梳理 自主学习,知识点一 函数的零点,函数yf(x)的零点就是方程f(x)0的 ,也就是函数yf(x)的图象与x轴的交点的 .,实数根,横坐标,思考 函数的零点是点吗?,答 函数yf(x)的图象与横轴的交点的横坐标称为这个函数的零点, 因此函数的零点不是点,是方程f(x)0的解, 即函数的零点是一个实数.,答案,知识点二 函数。
8、34 函数的应用34.1 函数与方程第 1 课时 函数的零点学习目标 1.理解函数零点的定义,会求函数的零点(重点);2.掌握函数零点的判定方法(难点) ;3.了解函数的零点与方程的根的联系(重点)预习教材 P9193,完成下面问题:知识点一 函数的零点函数 yf(x) 的零点就是方程 f(x)0 的实数根,也就是函数 yf(x)的图象与 x 轴的交点的横坐标【预习评价】思考 函数的零点是点吗?提示 函数 yf (x)的图象与横轴的交点的横坐标称为这个函数的零点,因此函数的零点不是点,是方程 f(x)0 的解,即函数的零点是一个实数知识点二 函数的零点、方程的根、函。