二、填空题:请将答案填在题中横线上 13若抛物线的焦点到双曲线的渐近线的距离为,则双曲线的离心率为_ 14已知点是椭圆的左焦点,直线与椭圆交于,两点,且,则椭圆的离心率为_ 15已知双曲线的左、右焦点分别为,抛物线的顶点在原点,它的准线过双曲线的焦点,若双曲线与抛物线的交点满足,则双曲线的离心率_
苏教版高中数学选修1-1第1章Tag内容描述:
1、二、填空题:请将答案填在题中横线上13若抛物线的焦点到双曲线的渐近线的距离为,则双曲线的离心率为_14已知点是椭圆的左焦点,直线与椭圆交于,两点,且,则椭圆的离心率为_15已知双曲线的左、右焦点分别为,抛物线的顶点在原点,它的准线过双曲线的焦点,若双曲线与抛物线的交点满足,则双曲线的离心率_16已知过点的直线与抛物线交于,两点,线段的垂直平分线经过点,为抛物线的焦点,则_三、解答题:解答应写出文字说明、证明过程或演算步骤17已知椭圆过点,离心率为(1)求椭圆的标准方程;(2)过椭圆的上顶点作直线交抛物线于两点,。
2、章末复习课网络构建核心归纳1.要注意全称命题、特称命题的自然语言之间的转换.2.正确理解“或”的意义,日常用语中的“或”有两类用法:其一是“不可兼”的“或”;其二是“可兼”的“或”,我们这里仅研究“可兼”的“或”.3.有的命题中省略了“且”“或”,要正确区分.4.常用“都是”表示全称肯定,它的特称否定为“不都是”,两者互为否定;用“都不是”表示全称否定,它的特称肯定可用“至少有一个是”来表示.5.在判定充分条件、必要条件时,要注意既要看由 p 能否推出 q,又要看由 q 能否推出 p,不能顾此失彼.证明题一般是要求就充。
3、2.2 椭圆2.2.1 椭圆及其标准方程学习目标 1.掌握椭圆的定义,会用椭圆的定义解决实际问题.2.掌握用定义法和待定系数法求椭圆的标准方程.3.理解椭圆标准方程的推导过程,并能运用标准方程解决相关问题.知识点 1 椭圆的定义平面内与两个定点 F1,F 2 的距离的和等于常数(大于|F 1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.【预习评价】 (正确的打“”,错误的打“”)(1)已知点 F1(1,0),F 2(1,0),动点 P 满足|PF 1|PF 2|4,则点 P 的轨迹是椭圆.( )(2)已知点 F1(1,0),F 2(1,0),动点 P 满足|PF。
4、1椭圆的定义平面内与两个定点F1,F2的距离的和等于_(大于|F1F2|)的点的轨迹叫做椭圆这两个定点叫做椭圆的焦点,两个焦点间的距离叫做椭圆的焦距椭圆的集合描述:设点M是椭圆上任意一点,点F1,F2是椭圆的焦点,则由椭圆的定义,椭圆就是集合PM|MF1|MF2|2a,0|F1F2|2a2椭圆的标准方程的推导过程如图,给定椭圆,它的焦点为F1,F2,焦距|F1F2|2c(c0),椭圆上任意一点到两焦点的距离之和等于2a(ac)(1)建系:以经过椭圆两焦点F1,F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy那么焦点F1,F2的坐标分别为_,_(2)列式:设M。
5、- 1 - 高中数学选修 1-1 知识点 第一章 常用 逻辑用语 1、 命题: 用语言、符号或式子表达的,可以 判断真假 的 陈述句 . 真命题: 判断为真的语句 .假命题: 判断为假的语句 . 2、“若 p ,则 q ”形式的命题中的 p 称为命题的 条件 , q 称为命题的 结论 . 3、 原命题:“若 p ,则 q ” 逆命题: “若 q ,则 p ” 否命题:“若 p ,则 q ” 逆否命题:“若 q ,则 p ” 4、 四种命题的真假性之间的关系: ( 1)两个命题互为逆否命题,它们有相同的真假性; ( 2)两个命题为互逆命题或互否命题,它们的真假性没有关系 5、若 pq ,则 。
6、1.1.1 命 题,第一章 1.1 命题及其关系,学习目标 1.理解命题的概念. 2.会判断命题的真假. 3.能把命题改写成“若p,则q”的形式.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 命题的概念,答案 (1)都是陈述句; (2)都能够判断真假.,思考 下列语句有什么共同特征? 若直线ab,则直线a和直线b无公共点; 367; 偶函数的图象关于y轴对称; 5能被4整除.,梳理 (1)定义:用语言、符号或式子表达的,可以 的陈述句.,判断真假,真,假,特别提醒:(1)判断一个语句是否为命题的两个要素: 是陈述句,表达形式可以是符号、表达式或语言; 可以。
7、1.1 命题及其关系1.1.1 命 题学习目标 1.了解命题的概念.2.会判断命题的真假,能够把命题化为“若 p,则q”的形式.知识点 1 命题的定义(1)用语言、符号或式子 表达的,可以判断真假的陈述句叫做命题.(2)判断为真的语句叫做 真命题.(3)判断为假的语句叫做 假命题.【预习评价】思考 (1)“x5”是命题吗?(2)陈述句一定是命题吗?提示 (1)“x5”不是命题,因为它不能判断真假.(2)陈述句不一定是命题,因为不知真假,只有可以判断真假的陈述句才叫做命题.知识点 2 命题的结构从构成来看,所有的命题都由条件和结论两部分构成.在数学中,命题常。
8、二、填空题:请将答案填在题中横线上13左传僖公十四年有记载:“皮之不存,毛将焉附?”这句话的意思是说皮都没有了,毛往哪里依附呢?比喻事物失去了借以生存的基础,就不能存在.皮之不存,毛将焉附?则“有毛”是“有皮”的_条件(将正确的序号填入空格处).充分必要充要既不充分也不必要14若命题“任意实数,使”为真命题,则实数的取值范围为_15设,若是的必要不充分条件,则实数的取值范围为_.16下列命题中,真命题的序号是_(填所有正确命题的序号)“若,则”的否命题;“,函数在定义域内单调递增”的否定;“”是“”的必要条件;函数与函。
9、章末检测试卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1过点A(3,2)且与椭圆1有相同焦点的椭圆的方程为()A.1 B.1C.1 D.1答案A解析由题意知c25,可设椭圆方程为1(0),则1,解得10或2(舍去),所求椭圆的方程为1.2双曲线y21的焦点坐标是()A(,0),(,0) B(2,0),(2,0)C(0,),(0,) D(0,2),(0,2)答案B解析双曲线方程为y21,a23,b21,且双曲线的焦点在x轴上,c2,即该双曲线的焦点坐标为(2,0),(2,0)故选B.3抛物线yx2的焦点坐标为()A(2,0) B(0,2)C. D.答案B解析抛物线的标准方程为x28y,则其焦点坐标。
10、章末检测(二)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.抛物线y28x的焦点到准线的距离是_.解析抛物线的焦点到准线的距离为p4.答案42.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则椭圆C的方程是_.解析依题意知c1,e,a2,b2a2c23.故椭圆C的方程为1.答案13.已知M(2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是_.解析点P的轨迹是以MN为直径的圆,又P为直角三角形的顶点,点P不能与M,N两点重合,故x2.答案x2y24(x2)4.直线ykx1与椭圆1总有公共点,。
11、模块综合试卷(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1已知命题p:x9,log3x2,则下列关于命题綈p的说法中,正确的是()A綈p:x9,log3x2为假命题B綈p:xln b”是“aln bab0,ab,ab0是ab的充分不必要条件,“ln aln b”是“ab”的充分不必要条件。
12、章末检测试卷(三)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.曲线ysin x在点P处的切线斜率是_.考点导数的几何意义题点求某点处切线斜率答案解析由ysin x,得ycos x,所以在点P处的切线斜率是kcos .2.函数f(x)ln xx的单调递增区间为_.考点导数的运用题点求函数单调区间答案(0,1)解析令f(x)10,解不等式即可解得x1,注意定义域为(0,).所以0x1.3.设f(x)xln x,若f(x0)2,则x0_.考点导数的运用题点求函数导数答案e解析f(x)xln x,f(x)ln xxln x1,由f(x0)2,得ln x012,x0e.4.函数f(x)(x1)2(x2)2的极大值是_。
13、章末检测试卷(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1若小球自由落体的运动方程为S(t)gt2(g为常数),该小球在t1到t3的平均速度为,在t2时的瞬时速度为v2,则和v2关系为()A.v2 B.v2C.v2 D不能确定z答案C解析平均速度为2g.S(t)gt2,S(t)gt,t2时的瞬时速度为v2,v2S(2)g22g,v2,故选C.2当x在(,)上变化时,导函数f(x)的符号变化如下表:x(,1)1(1,4)4(4,)f(x)00则函数f(x)的图象的大致形状为()答案C解析从表中可知f(x)在(,1)上单调递减,在(1,4)上单调递增,在(4,)上单调递减3已知某物体运动的路。
14、滚动训练(一)一、选择题1王昌龄的从军行中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的()A充分条件 B必要条件C充要条件 D既不充分又不必要条件答案B解析“攻破楼兰”是“返回家乡”的必要条件故选B.2“”是“sin ”的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分又不必要条件答案D解析易知“”不一定得到“sin ”,比如,但sin 0;反之亦然,如sin1,但.所以“”是“sin ”的既不充分又不必要条件,故选D.3“1m2”是“方程1表示的曲线是焦点在y轴上的椭圆”的()A充分不必要条件 B必。
15、滚动训练(四)一、选择题1不等式x(x2)0成立的一个必要不充分条件是()Ax(0,2) Bx(0,1)Cx1,) Dx(1,3)答案C解析由x(x2)0,得0x2,因为(0,2)1,),所以“x1,)”是“不等式x(x2)0成立”的一个必要不充分条件2已知f(x)x2,则曲线yf(x)过点P(1,0)的切线方程是()Ay0 B4xy40Cy0或4xy40 D4xy40答案C解析设切点坐标为(x0,x),f(x)2x,切线方程为y02x0(x1),x2x0(x01),解得x00或x02,所求切线方程为y0或y4(x1),即y0或4xy40.3已知以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60,则双曲线C的离心率为()A. B. C. D.答案B解析。
16、滚动训练(五)一、填空题1函数f(x)exx的单调递增区间是()A(0,) B(1,)C0,) D1,)答案A解析f(x)exx,f(x)ex1,由f(x)0,得ex10,即x0.2函数f(x)x23x4在0,2上的最小值是()A B C2 D3答案B解析f(x)x22x3,令f(x)0,x0,2,得x1.比较f(0)4,f(1),f(2),可知最小值为.3椭圆C的中心在原点,焦点在x轴上,若椭圆C的离心率等于,且它的一个顶点恰好是抛物线x28y的焦点,则椭圆C的标准方程为()A.1 B.1C.1 D.1答案A解析设,12,2,a4.1.4已知双曲线1(b0)的左、右焦点分别为F1,F2,其一条渐近线方程为yx,点P(,y0)在该双曲线上,则·。
17、滚动训练(二)一、选择题1双曲线25x29y2225的实轴长、虚轴长、离心率分别是()A10,6, B6,10,C10,6, D6,10,答案B解析双曲线25x29y2225即为1,可得a3,b5,c,则实轴长为2a6,虚轴长为2b10,离心率e.2若aR,则“|a2|1”是“a0”的()A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件答案B解析记不等式|a2|1的解集为A,则Aa|a1或a3,记Ba|a0,则BA,即“a0”能推出“|a2|1”,反之不能,所以“|a2|1”是“a0”的必要不充分条件故选B.3椭圆1与1(0k9)的关系为()A有相等的长、短轴长 B有相等的焦距C有相同的焦点 D有相同的顶点答。
18、章末检测试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1已知集合A1,a,B1,2,3,则“a3”是“AB”的()A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件答案A解析当a3时,A1,3,AB;当AB时,a2或3.所以“a3”是“AB”的充分不必要条件2命题“nN*,f(n)n”的否定是()AnN*,f(n)nBnN*,f(n)nCnN*,f(n)nDnN*,f(n)n答案A3下列命题中,不是全称命题的是()A任何一个实数乘以0都等于0B自然数都是正整数C所有的素数都是奇数D一定存在没有最大值的二次函数答案D解析D选项是存在性命题4设xR,则。
19、滚动训练(五)一、填空题1.函数f(x)exx的单调递增区间是_.考点导数在函数中的运用题点求函数单调区间答案(0,)解析f(x)exx,f(x)ex1,由f(x)0,得ex10,即x0.2.函数f(x)x23x4在0,2上的最小值是_.考点导数在函数中的运用题点求函数最小值答案解析f(x)x22x3,令f(x)0,x0,2,得x1.比较f(0)4,f(1),f(2),可知最小值为.3.椭圆C的中心在原点,焦点在x轴上,若椭圆C的离心率等于,且它的一个顶点恰好是抛物线x28y的焦点,则椭圆C的标准方程为_.考点椭圆的几何性质题点求椭圆的方程答案1解析设,12,2,a4.1.4.已知双曲线1(b0)的左、右焦点分别。
20、章末检测(一)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.下列语句中是命题的个数_.平行于同一条直线的两条直线必平行吗?一个数不是正数就是负数.xy为有理数,则x,y也都是有理数.作ABCABC.解析根据命题的概念,判断是不是命题.疑问句.没有对平行于同一条直线的两条直线是否平行作出判断,不是命题.是假命题.0既不是正数也不是负数.是假命题.如x,y.是祈使句,不是命题.答案22.命题“若,则tan 1”的逆否命题是_.解析命题“若,则tan 1”的逆否命题是“若tan 1,则”.答案若tan 。