,苏科数学,6.4探索三角形相似的条件(5),1如何识别两三角形是否相似?,2什么叫黄金分割点?,问题情境,在ABC中,ABAC,A36, BD是ABC的角平分线(1)ABC 与BDC 相似吗?为什么?(2)判断点D是否是AC的黄金分割点,并说明理由,探索与证明,如何证明三角形的三条中线相交于一点?
探索三角形全等条件Tag内容描述:
1、,苏科数学,6.4探索三角形相似的条件(5),1如何识别两三角形是否相似?,2什么叫黄金分割点?,问题情境,在ABC中,ABAC,A36, BD是ABC的角平分线(1)ABC 与BDC 相似吗?为什么?(2)判断点D是否是AC的黄金分割点,并说明理由,探索与证明,如何证明三角形的三条中线相交于一点?,还有其他方法吗?,D,F,探索与证明,归纳与思考,归纳与思考,M,F,N,G,H,例1 如图,正五边形ABCDE的5条边相等,5个内角也相等(1)找找看,图中是否有黄金三角形? (2)点F分别是哪些线段的黄金分割点?,例题讲解,例2 已知:ABC中,ABAC,ADBC,AD与中线BE相交于点G,。
2、,苏科数学,6.4探索三角形相似的条件(3),问题情境,测量与检验,归纳与思考,如图,点D在ABC内,点E在ABC外,1=2,3=4DBE与ABC相似吗?为什么?,例题讲解,2. 如图,ABC与 ABC相似吗?有哪些 判断方法?,1.如图,在ABC和 DEF中,BE,要 使ABCDEF,需要添加什么条件?,3.如图,在ABC中,AB4cm,AC2cm (1)在AB上取一点D,当AD_时,ACDABC; (2)在AC的延长线上取一点E,当CE 时, AEBABC;此时,BE与DC有怎样的位置关系?为什么?,E,有一池塘, 周围都是空地如果要测量池塘两端A、B间的距离,你能利用本节所学的知识解决这个问题吗?,小结与思考,。
3、,苏科数学,6.4探索三角形相似的条件(2),问题情境,问题1相似三角形的边角具有什么性质?反过来,我们知道,当两个三角形三角分别相等,三边对应成比例,这两个三角形相似是否可以减少些条件呢? 问题2上节课我们学习了“平行得相似”的方法,请说一说,问题情境,问题3记得我们怎么探索全等三角形的条件吗?类似的判定两个三角形相似还有没有更简洁的方法呢? 问题4一组角相等可以吗?两组角呢?,如图,小明用一张纸遮住了3个三角形的一部分,你能画出这3个三角形吗?,观察与讨论,如图,如果AC,BD,ABCD,那么第一个三角形与第二个三角形。
4、,苏科数学,6.4探索三角形相似的条件(1),问题情境,问题1 一组等距的平行线截直线a所得的线段相等,那么在直线b上截得的线段有什么关系呢? 问题2 如果这组平行线不等距,它们截得的线段又有什么关系?,如图,画三条互相平行的直线l1、l2、l3,再任意画2条直线a、b,使a、b分别与l1、l2、l3相交于点A、B、C和点D、E、F,a,b,操作与讨论,操作:度量所画图中AB、BC、DE、EF的长度并计算对应线段的比值,你有什么发现?,a,b,操作与讨论,如果任意平移l3,再度量AB、 BC、DE、EF的长度这些比值 还相等吗?,b,a,操作与讨论,如果平行线增加到4条、。
5、11.3 探索三角形全等的条件(1)一、选择1能判断AB CABC的条件是 ( )AAB=AB,AC=AC, C= C BAB=AB , A= A,BC=BCCAC=AC, A= A,BC=BC DAC=AC, C=C ,BC=BC2(2014贵阳) 如图,点 A, D, C, F 在同一条直线上,AB=DE,BC=EF,要使ABCDEF,还需要添加的一个条件是 ( )A BCA= F B B= E CBC EF D A= EDF3如图,AB , CD 交于点 O,AO=CO,BO=DO,则在以下结论中:。
6、11.3 探索三角形全等的条件(5)一、选择1如图,PDAB ,PEAC,垂足分别为 D,E,且 PD=PE,判定APD 与APE 全等的理由是 ( )ASAS BAAS CSSS DHL2已知:如图所示,ABC 与ABD 中,C=D=90 ,要使ABC ABD ,并用“HL”判定成立,还需要加的条件是 ( )ABAC=BAD BBC =BD 或 AC=ADCABC=ABD DAB 为公共边3如图,已知 AD 是ABC 的 BC 边上的高,下列能使ABDACD 的条件是 ( )AAB=AC BBAC=90 CBD=AC DB=45。
7、11.3 探索三角形全等的条件(2)一、选择1下列说法: 有两个角和一个角的对边对应相等的两个三角形全等; 有一边和一个角对应相等的两个等腰三角形全等; 有一边对应相等的两个等边三角形全等; 有一个锐角和这个锐角所对直角边对应相等的两个直角三角形全等其中,正确的是 ( )A B C D2如图,MB=ND, MBA= NDC,下列添加的条件中,下列 不能用于判定ABMCDN 的选项是 ( )A M= N BAB=CDCAM=CN DAM CN3如图,AE=CF, AFD= CEB,那么添加下列一个条件后,仍无法判定 ADF CBE 的是 ( )A A= C BAD=CB CBE=DF D。
8、11.3 探索三角形全等的条件(4)一、选择l用直尺和圆规作一个角的平分线的示意图如图所 示,则能说明AOC=BOC 的依据是 ( )ASSS B ASACAAS DSAS2下列各条件中,不能作出唯一三角形的条件是 ( )A已知两边和夹角 B已知两角和夹边C已知两边和其中一条边所对的角 D已知两角和其中一角的对边3如图,点 C 在AOB 的 OB 边上,用尺规作出了 CNOA,在作图痕迹是 ( )A以点 C 为圆心,OD 为半径的弧 B以点 E 为圆心,OD 为半径的弧C以点 C 为圆心,DM 为半径的弧 D以点 E 为圆心,DM 为半径的弧4如图,在ABC 与DEF 中,给出以下六个条件: AB=DE; BC=EF。
9、第 2 课时 利用两边及一角的关系判定三角形相似关键问答如果已知两边成比例且夹角相等,那么这两个三角形相似吗?如果已知两边成比例且有一组对应角相等,那么这两个三角形相似吗?1 能判定ABCDEF 的条件是( )A. B. ,AFABDE ACDF ABDE ACDFC. ,BE D. ,ADABDE ACDF ABDE ACDF2如图 4411,在三角形纸片 ABC 中,AB9,AC 6,BC 12,沿虚线剪下的阴影部分的三角形与ABC 相似的是( )图 4411命题点 1 利用两边成比例且夹角相等证明两三角形相似 热度:93%32017景德镇模拟 如图 4412,在四边形 ABCD 中,如果ADCBAC,那么下列条件中不能判定AD。
10、,苏科数学,1.2 全等三角形,问题情境,1观察:生活中能够完全重合的两个图形很多, 观察2个完全相同的信封你能找出其中的全等图形吗?,2思考:如图,将ABC沿直线BC平移得DEF; 将ABC沿BC翻折得到DBC; 将ABC旋转180得到AED,寻找上图中两三角形的对应元素, 它们的对应边有什么关系?对应角有什么关系?,数学概念,1全等三角形的概念: 能够完全重合的2个三角形是全等三角形,2 全等三角形的性质: 全等三角形的对应边,对应角相等.,用符号语言可以表述为: ABCDEF, AD,BE,CF, ABDE,BCEF,ACDF,例题讲解,1若ABCDEF, 写出这两个三角形的相。
11、4.4 探索三角形相似的条件探索三角形相似的条件 第第 1 课时课时 利用两角判定三角形相似利用两角判定三角形相似 1.理解相似三角形的定义,掌握定义中的两个条件;2.掌握相似三角形的判定定理 1; (重点) 3.能熟练运用相似三角形的判定定理 1.(难点) 一、情景导入 如图,从放大镜里看到的三角尺和原来的三角尺相似吗? 二、合作探究 探究点一:两角分别相等的两个三角形相似 在ABC 和。
12、,苏科数学,1.3 探索三角形全等的条件(8),问题情境,1判定两个三角形全等的方法有哪些 2如何将一个等腰三角形变成两个全等的直角三角形? 3在RtABC、RtDEF 中,BE90, (1)若AD,ABDE, 则ABCDEF( ) (2)若AD,BCEF, 则ABCDEF( ) (3)若ABDE,BCEF, 则ABCDEF ( ),1你还能添加哪两个不同的条件使这两个直角三角形全等?,建构活动,2用直尺和圆规作RtABC,使C90,CBa,ABc (1)ABC就是所求作的三角形吗? (2)你作的直角三角形和其他同学所作的三角形能完全 重合吗? (3)交流之后,你发现了什么? (4)想一想,在画图时是根。
13、,苏科数学,1.3 探索三角形全等的条件(7),问题情境,1工人师傅常常利用角尺平分一个角如图,在AOB的两边OA、OB上分别任取OCOD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是AOB的平分线 请同学们说明这样画角平分线的道理,1(1)请按序说出木工师傅的“操作”过程 (2)用直尺和圆规在下图中按序将木工师傅的“操作”过程作出来,并写出法 (3)请证明你的作法是正确的,建构活动,2(1)在下图中作出平角AOB的平分线 (2)过直线上一点,你能作出这条直线的垂线吗? (3)如果点在直线外呢?,建构活动,1.。
14、,苏科数学,1.3 探索三角形全等的条件(6),问题情境,1小明用长度分别为5、6、7的3根木棒首尾顺次相接搭出了ABC,试问:小明应选用怎样大小的3根木棒能搭出MPN与ABC全等?,1已知三条线段a、b、c,以这三条线段为边画一个三角形,并把你画好的三角形剪下,和其他同学进行比较,看剪下的三角形是否能完全重合,建构活动,通过以上的操作你发现了什么?,2教师出示三角形、四边形木架,让学生动手拉动木架的两边教师提出问题: (1)演示实验说明了什么? (2)你能举出生活中利用三角形稳定性的例子吗?,建构活动,1.三边对应相等的两个三角形全等。
15、,苏科数学,1.3 探索三角形全等的条件(4),问题情境,1判定2个三角形全等,你已有哪些方法?,2已知:如图,AD,ACBDBC, 求证:ABDC,1如图,在ABC和DEF中,AD, BE,BCEF,ABC与DEF全等吗? 能利用“角边角”证明你的结论吗?,建构活动,推论:两角及其中一角的对边分别相等的两个三角形 全等.,数学概念,数学活动,例1 如图ACBDFE,BCEF,根据“ASA”,应补充一个直接条件_根据“AAS”,那么补充的条件为_,才能使ABCDEF,数学活动,例2 如图,BECD,12, 则ABAC吗?为什么?,数学活动,例3 已知:如图,ABCABC,AD、 AD分别是ABC和ABC的高 证明。
16、,苏科数学,1.3 探索三角形全等的条件(2),问题情境,1.如图,ABAC,还需补充条件_,就可根据“SAS ”证明ABEACD.,2.“三月三,放风筝”如图是小东同学自己动手制作的风筝,他根据ABCB,ABDCBD,不用度量,就知道ADCD请你用所学的知识给予说明,问题情境,数学活动,例1 如图,已知:点D、E在BC上,且BDCE,ADAE,12,由此你能得出哪两个三角形全等?请给出证明,数学活动,例2 已知:如图,AB、CD相交于点E,且 E是AB、CD 的中点 求证:AEC BED ACDB,数学运用,1. 已知:如图,点E、F在CD上,且CE DF,AE BF, AE BF. 求证:AEC BFD 你还能证得其。
17、,苏科数学,1.3 探索三角形全等的条件(3),问题情境,1上节课你学会了哪种证明三角形全等的方法?,2判断三角形全等至少要有几个条件?,3请猜想,构成全等还有哪些条件组合 ?,1小明用纸板挡住了两个三角形的一部分,你能画出这两个三角形吗?每个人画出的三角形都一样吗?,建构活动,2请你用圆规和直尺画ABC, 使ABa,A,B (1)作ABa (2)在AB的同一侧分别作MAB, NBA ,AM、BN相交于点C (3)ABC就是所求作的三角形,建构活动,基本事实:两角及其夹边分别相等的两个三角形全等,数学概念,数学活动,例1 图中有几对全等三角形?你能找出它们。
18、,苏科数学,1.3 探索三角形全等的条件(1),问题情境,1操作:已知ABC,画一个与它全等的三角形, 说说你是如何画的?,1操作:如图,用一张长方形纸剪一个直角三角形, 怎样才能使全班同学剪下的直角三角形都全等?,建构活动,思考:我们确定了这个三角形的哪几个条件, 就保证了剪下的三角形全等?,2观察:下图中的三个三角形,哪两个三角形是全等三角形?,思考:ABC与PNM满足了什么条件时,它们全等? ABC为什么不与EDF全等?,3按下列作法,用直尺和圆规作ABC, 使A1,AB = a, AC = b 作MAN1 在射线AM、AN上分别作线段ABa,ACb 连接BC ABC。
19、,苏科数学,1.3 探索三角形全等的条件(5),问题情境,1回顾三角形全等的三个判定方法,2如图,AD平分BAC,要使ABDACD, (1)根据“SAS”需添加条件_; (2)根据“ASA”需添加条件_; (3)根据“AAS”需添加条件_,1如图,AB,12,EAEB, 你能证明ACBD吗?,建构活动,2如图,点C、F在AD上,且AFDC,BE, AD,你能证明ABDE吗?,建构活动,1. 为了利用“ASA”或“AAS”定理判定两个三角形全等,有时需要先把已知中的某个条件,转变为判定三角形全等的直接条件,数学概念,2证明两条线段相等或两个角相等可以通过证明它们所在的两个三角形全等而得。