,故选D2(2012年北京理科)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余
统计讲义Tag内容描述:
1、故选D2(2012年北京理科)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060 试估计厨余垃圾投放正确的概率; 试估计生活垃圾投放错误的概率; 假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,其中,当数据的方差最大时,写出的值(结论不要求证明),并求此时的值(注:,其中为数据,的平均数)【解析】 由题意可知: 由题意可知: 由题意可知:,因此有当,时,有小题热身1某工厂对一批产品进行了抽样检测,下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是,样本数据分组为,已知样。
2、 650 1670 300 450备受关注百分比25 20 10 23 18 8 24备受关注百分比指:一个展区中受到所有相关人士关注(简称备受关注)的企业数与该展区的企业数的比值(1)从企业产品展 7个展区的企业中随机选取 1家,求这家企业是选自“智能及高端装备”展区备受关注的企业的概率;(2)从“消费电子及家电” 展区备受关注的企业和“ 医疗器械及医药保健 ”展区备受关注的企业中,任选 2家接受记者采访(i)记 为这 2家企业中来自于“消费电子及家电” 展区的企业数,求随机变量 的分布列;X X(ii)假设表格中 7个展区的备受关注百分比均提升 记 为这 2家企业中来自于“ 消费电子及10 Y家电”展区的企业数试比较随机变量 , 的均值 和 的大小 (只需写出结论)XYEX统计概率:超几何分布大题精做四【答案】 (1) ;(2) (i)见解析;(ii) 36EXY【解析】 (1)7 个展区企业数共 家,4067501634506其中备受关注的智能及高端装备企业共 家,2%设从各展区随机选 1家企业,这家企业是备受关注的智能及高端装备为。
3、概率统计知识结构模块一,概率初步知识精讲一,事件学校组织六年级八个班进行,元旦联欢会,活动,每个班都准备了一个节目,活动的时候用抽签的方式确定各个班级的出场顺序那么哪个年级可能第一个出场,此时,每个班级都有第一个出场的可能,但无法确定具体哪。
4、1 第十六讲 统计 课程目标课程目标 掌握统计常见方法;知道三种统计图 让学生体会运用这些方法能系统的解决这类问题 感受数学与实际生活之间的联系。
课程重点课程重点 理解三种统计用法上的不同之处,能看懂统计图。
课程难点课程难点 1. 理解。
5、 第 1 页 / 共 13 页 第第 58 讲:统计初步讲:统计初步 一、课程标准 1、了解抽样方法 2、频率分布直方图的应用 3、用样本的数字特征估计总体的数字特征 二、基础知识回顾 一、抽样方法 1. 简单随机抽样 (1)定义:设一个总体含有 N 个个体,从中逐个不放回地抽取 n 个个体作为样本(nN),如果每次抽取 时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样 (2。
6、第 23 讲 统计 知识点一:知识点一:统计表统计表 1.1.简单数据的统计过程简单数据的统计过程: :收集数据:根据实际问题设计简单的调查表,常用的数据收集方法 有调查、试验、测量等。
整理数据:把收集到的原始数据进行整理。
描述数据:把整理好 的数据展示出来。
分析数据:通过观察、比较、计算等方法从数据中发现并提取信息,进行 简单的判断或预测,为我们解决问题提供帮助。
2 2. .统计表:统计表:。
7、 第 1 页 / 共 10 页 第第 58 讲:统计初步讲:统计初步 一、课程标准 1、了解抽样方法 2、频率分布直方图的应用 3、用样本的数字特征估计总体的数字特征 二、基础知识回顾 一、抽样方法 1. 简单随机抽样 (1)定义:设一个总体含有 N 个个体,从中逐个不放回地抽取 n 个个体作为样本(nN),如果每次抽取 时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样 (2。
8、济运算活动。
数理内容主要包含统计图表的使用,它能行之有效且更为直观地反映数据特征及其变化规律,帮助我们可以把数图有效结合,是最佳的数学应用科学方式之一。
确定位置是指从现实生活与某一情境中通过观察、判断,分析及抽象概括出物体所在的准确方向和具体位置,进一步提升数形结合和空间思维能力。
1、填数规律找规律中的填数基础题型是指给予我们一些已知的残缺数据或数阵,通过深度观察和分析,逐步探寻出数列规律并完成填数运算。
2、图形规律找规律中的图形复合题型是指给予我们某些已知的平面图形,通过加工操作或变形所能得出的可能变化后图形乃至图形推算边角数的规律计算。
3、统计图表统计运算中将已有的统计表按照数理运算的核心要求编制成三种统计图用来展示数据特点和反馈解读信息的专有途径。
4、数对用来反映横行竖列,依据先列后行的顺序以类似坐标形式体现物体方位的形式之一。
5、方位角依据上北下南,左西右东的方位顺序和特殊角度、距离等来定义物体所在位置的方式之一。
二、例题精讲例1: 请找出下列各组数排列的规律并根据规律在括号里填上适当的数。
(1)1,5,9,13。
9、数表表中每一位置出现各个数字的可能性相同 随机数表法是对样本进行编号后, 按照一定的规律从随机数表中读数, 并取出相应的样本的 方法 简单随机抽样是最简单、最基本的抽样方法 系统抽样:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个 个体,得到所需要的样本的抽样方法 抽出办法:从元素个数为N的总体中抽取容量为n的样本,如果总体容量能被样本容量整 除,设 N k n ,先对总体进行编号,号码从1到N,再从数字1到k中随机抽取一个数s作 为起始数,然后顺次抽取第2(1)sksksnk, ,个数,这样就得到容量为n的样 本如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样 方法进行抽样 系统抽样适用于大规模的抽样调查,由于抽样间隔相等,又被称为等距抽样 分层抽样:当总体有明显差别的几部分组成时,要反映总体情况,常采用分层抽样,使 总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按 层在总体中所占比例进行简单随机抽样,这种抽样方法叫做分层抽样 分层抽样的样本具有较强的代表性,而且各层抽样时。
10、数表表中每一位置出现各个数字的可能性相同 随机数表法是对样本进行编号后, 按照一定的规律从随机数表中读数, 并取出相应的样本的 方法 简单随机抽样是最简单、最基本的抽样方法 系统抽样:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个 个体,得到所需要的样本的抽样方法 抽出办法:从元素个数为N的总体中抽取容量为n的样本,如果总体容量能被样本容量整 除,设 N k n ,先对总体进行编号,号码从1到N,再从数字1到k中随机抽取一个数s作 为起始数,然后顺次抽取第2(1)sksksnk, ,个数,这样就得到容量为n的样 本如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样 方法进行抽样 系统抽样适用于大规模的抽样调查,由于抽样间隔相等,又被称为等距抽样 分层抽样:当总体有明显差别的几部分组成时,要反映总体情况,常采用分层抽样,使 总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按 层在总体中所占比例进行简单随机抽样,这种抽样方法叫做分层抽样 分层抽样的样本具有较强的代表性,而且各层抽样时。
11、数表表中每一位置出现各个数字的可能性相同 随机数表法是对样本进行编号后, 按照一定的规律从随机数表中读数, 并取出相应的样本的 方法 简单随机抽样是最简单、最基本的抽样方法 系统抽样:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个 个体,得到所需要的样本的抽样方法 抽出办法:从元素个数为N的总体中抽取容量为n的样本,如果总体容量能被样本容量整 除,设 N k n ,先对总体进行编号,号码从1到N,再从数字1到k中随机抽取一个数s作 为起始数,然后顺次抽取第2(1)sksksnk, ,个数,这样就得到容量为n的样 本如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样 方法进行抽样 系统抽样适用于大规模的抽样调查,由于抽样间隔相等,又被称为等距抽样 分层抽样:当总体有明显差别的几部分组成时,要反映总体情况,常采用分层抽样,使 总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按 层在总体中所占比例进行简单随机抽样,这种抽样方法叫做分层抽样 分层抽样的样本具有较强的代表性,而且各层抽样时。
12、数表表中每一位置出现各个数字的可能性相同 随机数表法是对样本进行编号后, 按照一定的规律从随机数表中读数, 并取出相应的样本的 方法 简单随机抽样是最简单、最基本的抽样方法 系统抽样:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个 个体,得到所需要的样本的抽样方法 抽出办法:从元素个数为N的总体中抽取容量为n的样本,如果总体容量能被样本容量整 除,设 N k n ,先对总体进行编号,号码从1到N,再从数字1到k中随机抽取一个数s作 为起始数,然后顺次抽取第2(1)sksksnk, ,个数,这样就得到容量为n的样 本如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样 方法进行抽样 系统抽样适用于大规模的抽样调查,由于抽样间隔相等,又被称为等距抽样 分层抽样:当总体有明显差别的几部分组成时,要反映总体情况,常采用分层抽样,使 总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按 层在总体中所占比例进行简单随机抽样,这种抽样方法叫做分层抽样 分层抽样的样本具有较强的代表性,而且各层抽样时。
13、数表表中每一位置出现各个数字的可能性相同 随机数表法是对样本进行编号后, 按照一定的规律从随机数表中读数, 并取出相应的样本的 方法 简单随机抽样是最简单、最基本的抽样方法 系统抽样:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个 个体,得到所需要的样本的抽样方法 抽出办法:从元素个数为N的总体中抽取容量为n的样本,如果总体容量能被样本容量整 除,设 N k n ,先对总体进行编号,号码从1到N,再从数字1到k中随机抽取一个数s作 为起始数,然后顺次抽取第2(1)sksksnk, ,个数,这样就得到容量为n的样 本如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样 方法进行抽样 系统抽样适用于大规模的抽样调查,由于抽样间隔相等,又被称为等距抽样 分层抽样:当总体有明显差别的几部分组成时,要反映总体情况,常采用分层抽样,使 总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按 层在总体中所占比例进行简单随机抽样,这种抽样方法叫做分层抽样 分层抽样的样本具有较强的代表性,而且各层抽样时。
14、特征 (如平均数、 标准差) , 并作出合理的解释 会用样本的频率分布估计总体分布, 会用样本的基本数字特征估计总体的基本 数字特征,理解用样本估计总体的思想 会用随机抽样的基本方法和样本估计 总体的思想解决一些简单的实际问题 (2)变量的相关性 会作两个有关联变量的数据的散点 图, 会利用散点图认识变量间的相关关系 了解最小二乘法的思想,能根据给出 的线性回归方程系数公式建立线性回归方 程 分层抽样和 系统抽样 A 用样本估 计总体 频率分布表, 直方图、 折线图、 茎叶图 B 样本数据的基本的数 字特征(如平均数、标 准差) B 用样本的频率分布估 计总体分布, 用样本的基本数字特 征估计总体的基本数 字特征 C 变量的相 关性 线性回归方程 B 一随机抽样 1随机抽样:满足每个个体被抽到的机会是均等的抽样,共有三种经常采用的随机抽样方 法: 简单随机抽样:从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽 取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样 抽出办法:抽签法:用纸片或小球分别标号后抽签的方法。
15、项目的统计表。
百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表4. 制作步骤(1) 搜集数据(2)整理数据要根据制表的目的和统计的内容,对数据进行分类(3) 设计草表:要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度。
(4)正式制表:把核对过的数据填入表中,并根据制表要求用简单、明确的语言写上统计表的名称和制表日期二、统计图1.意义用点线面等来表示相关的量之间的数量关系的图形叫做统计图。
2. 分类(1) 条形统计图用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照定的顺序排列起来。
优点:很容易看出各种数量的多少。
注意:画条形统计图时,直条的宽窄必须相同取一个单位长度表示数量的多少要根据具体情况而确定复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例制作条形统计图的一般步骤:根据图纸的大小,画出两条互相垂直的射线在水平射线上,适当分配条形的位置,确定直线。
16、数表表中每一位置出现各个数字的可能性相同 随机数表法是对样本进行编号后, 按照一定的规律从随机数表中读数, 并取出相应的样本的 方法 简单随机抽样是最简单、最基本的抽样方法 系统抽样:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个 个体,得到所需要的样本的抽样方法 抽出办法:从元素个数为N的总体中抽取容量为n的样本,如果总体容量能被样本容量整 除,设 N k n ,先对总体进行编号,号码从1到N,再从数字1到k中随机抽取一个数s作 为起始数,然后顺次抽取第2(1)sksksnk, ,个数,这样就得到容量为n的样 本如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样 方法进行抽样 系统抽样适用于大规模的抽样调查,由于抽样间隔相等,又被称为等距抽样 分层抽样:当总体有明显差别的几部分组成时,要反映总体情况,常采用分层抽样,使 总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按 层在总体中所占比例进行简单随机抽样,这种抽样方法叫做分层抽样 分层抽样的样本具有较强的代表性,而且各层抽样时。
17、解某些情况 【难度】 【解析】 C; A 中总体容量和样本容量都较小,可以用抽签法; B 中总体中的个体有明显的层次,分层抽样较好; C 中总体容量和样本容量都较大,可用系统抽样法; D 中总体容量较大,样本较小,可用随机数表法 【例2】 某校高三年级 195 名学生已编号为 1,2,3,195,为了解高三学生的饮食情 况,要按1 5的比例抽取一个样本,若采用系统抽样方法进行抽取,其中抽取 3 名学生的编号可能是( ) A3,24,33 B31,47,147 C133,153,193 D102, 132,159 【难度】 【解析】 C 【例3】 某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为 n的样本;如果采用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本 容量增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,则样本容 量为_ 【难度】 【解析】 6; 总体容量36N (人) , 当样本容量为n时,系统抽样间隔为 36 * n N 分层抽样的抽样比为 36 n ,求得工程师、技术员、技工的样本人数分别。
18、分层抽样;简单随机抽样 2. 从编号为1 50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射 实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹 的编号可能是( ) A 5 10 15 20 25, , , , B 3 13 23 33 43, , , , C 1 2 3 4 5, , , D2 4 6 16 32, , , , 【难度】 【解析】 根据系统抽样的取法知,选 B 3. 一个总体中有100个个体,随机编号0,1,2,99,依编号顺序平均分成 10个小组,组号依次为1,2,3,10现用系统抽样方法抽取一个容量 为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的 号码个位数字与mk的个位数字相同,若6m ,则在第7组中抽取的号码 是 【难度】 【解析】 63;第k组的号码为1 *10k ,1 *10 1k ,1 *109k ,当6m 时, 第k组抽取的号的个位数字为mk的个位数字, 所以第7组中抽取的号码的个 位数字为3 ,所以抽取号。
19、项目的统计表。
百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表4. 制作步骤(1) 搜集数据(2)整理数据要根据制表的目的和统计的内容,对数据进行分类(3) 设计草表:要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度。
(4)正式制表:把核对过的数据填入表中,并根据制表要求用简单、明确的语言写上统计表的名称和制表日期二、统计图1.意义用点线面等来表示相关的量之间的数量关系的图形叫做统计图。
2. 分类(1) 条形统计图用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照定的顺序排列起来。
优点:很容易看出各种数量的多少。
注意:画条形统计图时,直条的宽窄必须相同取一个单位长度表示数量的多少要根据具体情况而确定复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例制作条形统计图的一般步骤:根据图纸的大小,画出两条互相垂直的射线在水平射线上,适当分配条形的位置,确定直线。
20、特征 (如平均数、 标准差) , 并作出合理的解释 会用样本的频率分布估计总体分布, 会用样本的基本数字特征估计总体的基本 数字特征,理解用样本估计总体的思想 会用随机抽样的基本方法和样本估计 总体的思想解决一些简单的实际问题 (2)变量的相关性 会作两个有关联变量的数据的散点 分层抽样和 系统抽样 A 用样本估 计总体 频率分布表, 直方图、 折线图、 茎叶图 B 样本数据的基本的数 字特征(如平均数、标 准差) B 用样本的频率分布估 计总体分布, 用样本的基本数字特 征估计总体的基本数 字特征 C 变量的相 关性 线性回归方程 B 高考要求 模块框架 统计 2 图, 会利用散点图认识变量间的相关关系 了解最小二乘法的思想,能根据给出 的线性回归方程系数公式建立线性回归方 程 一随机抽样 1随机抽样:满足每个个体被抽到的机会是均等的抽样,共有三种经常采用的随机抽样方 法: 简单随机抽样:从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽 取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样 抽出办法:抽签法:用纸。