第2讲 椭圆、双曲线与抛物线,近五年高考试题统计与命题预测,答案:D,答案:A,答案:B,答案:D,答案:2,1.圆锥曲线的定义、标准方程与几何性质,3.直线与圆锥曲线位置关系问题 (1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点. (2)从代数角度看,可通过将表示直线的
通用版2020版高考数学大二轮复习专题七第1讲直线与圆课件文Tag内容描述:
1、第2讲 椭圆、双曲线与抛物线,近五年高考试题统计与命题预测,答案:D,答案:A,答案:B,答案:D,答案:2,1.圆锥曲线的定义、标准方程与几何性质,3.直线与圆锥曲线位置关系问题 (1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点. (2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断.设直线l的方程为Ax+By+C=0,圆锥曲线方程为f(x,y)=0. 若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行(或重合). 若a0,设=b2-4ac. 当0。
2、7.1 直线、圆、圆锥曲线小题专项练,-2-,1.若两条不重合的直线l1,l2的斜率k1,k2存在,则l1l2k1=k2,l1l2k1k2=-1. 4.圆的方程:(1)标准方程:(x-a)2+(y-b)2=r2,圆心为(a,b),半径为r. (2)一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F0). (3)以A(x1,y1),B(x2,y2)为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.,-3-,5.圆锥曲线的标准方程 (3)抛物线:y2=2px(p0),y2=-2px(p0),x2=2py(p0),x2=-2py(p0).,-4-,一、选择题,二、填空题,1.直线l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8,则“m=-1或m=-7”是“l1l2”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.。
3、第1讲 函数及其应用,近五年高考试题统计与命题预测,1.(2019全国,理3)已知a=log20.2,b=20.2,c=0.20.3,则 ( ) A.a20=1, 又0c=0.20.30.201, 所以acb.故选B. 答案:B,答案:B,3.(2018全国,理11)已知f(x)是定义域为(-,+)的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+f(50)=( ) A.-50 B.0 C.2 D.50 解析:f(-x)=f(2+x)=-f(x), f(x+4)=f(x+2)+2=-f(x+2)=f(x). f(x)的周期为4.f(x)为奇函数,f(0)=0. f(2)=f(1+1)=f(1-1)=f(0)=0,f(3)=f(-1)=-f(1)=-2,f(4)=f(0).f(1)+f(2)+f(3)+f(4)=0. f(1)+f(2)+f(50)=f(49)+f(50)=f(1)+f(2)=2. 答案:C,4.(2。
4、第2讲 不等式选讲,近五年高考试题统计与命题预测,2.(2019全国,文23)已知f(x)=|x-a|x+|x-2|(x-a). (1)当a=1时,求不等式f(x)0的解集; (2)若x(-,1)时,f(x)0,求a的取值范围. 解:(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1). 当x1时,f(x)=-2(x-1)20; 当x1时,f(x)0. 所以,不等式f(x)0的解集为(-,1). (2)因为f(a)=0,所以a1. 当a1,x(-,1)时, f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)0. 所以,a的取值范围是1,+).,3.(2018全国,文23)已知f(x)=|x+1|-|ax-1|. (1)当a=1时,求不等式f(x)1的解集; (2)若x(0,1)时不等式f(x)x成立,求a的取值范围.,4.(2018全国,文23)设函。
5、第1讲 参数方程与极坐标,近五年高考试题统计与命题预测,2.(2019全国,理22)在极坐标系中,O为极点,点M(0,0)(00)在曲线C:=4sin 上,直线l过点A(4,0)且与OM垂直,垂足为P. (1)当0= 时,求0及l的极坐标方程; (2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.,4.(2018全国,理22)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2+2cos -3=0. (1)求C2的直角坐标方程; (2)若C1与C2有且仅有三个公共点,求C1的方程.,1.极坐标系的概念 设M是平面内一点,极点O与点M的距离|OM|叫做点M。
6、第2讲 导数及其综合应用,近五年高考试题统计与命题预测,1.(2019全国,文10)曲线y=2sin x+cos x在点(,-1)处的切线方程为( ) A.x-y-1=0 B.2x-y-2-1=0 C.2x+y-2+1=0 D.x+y-+1=0 解析:当x=时,y=2sin +cos =-1,即点(,-1)在曲线y=2sin x+cos x上. y=2cos x-sin x, y|x=2cos -sin =-2. 曲线y=2sin x+cos x在点(,-1)处的切线方程为y-(-1)=-2(x-),即2x+y-2+1=0.故选C. 答案:C,2.(2018全国,理16)已知函数f(x)=2sin x+sin 2x,则f(x)的最小值是 . 解析:由题意可得T=2是f(x)=2sin x+sin 2x的一个周期, 所以求f(x)的最小值可考虑求f(x)在0,2)上的值域. 由。
7、第1讲 三角函数的图象与性质,近五年高考试题统计与命题预测,答案:D,答案:A,答案:B,4.(2019全国,文5)函数f(x)=2sin x-sin 2x在0,2的零点个数为( ) A.2 B.3 C.4 D.5 解析:由f(x)=2sin x-sin 2x=2sin x-2sin xcos x=2sin x(1-cos x)=0,得sin x=0或cos x=1. x0,2,x=0或x=或x=2. 故f(x)在区间0,2上的零点个数是3.故选B. 答案:B,5.(2019北京,文6)设函数f(x)=cos x+bsin x(b为常数),则“b=0”是“f(x)为偶函数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 解析:当b=0时,f(x)=cos x+bsin x=cos x,f(x)为。
8、第1讲 等差数列与等比数列,近五年高考试题统计与命题预测,1.(2019全国,文6)已知各项均为正数的等比数列an的前4项和为15,且a5=3a3+4a1,则a3=( ) A.16 B.8 C.4 D.2 解析:设等比数列an的公比为q(q0), 所以a3=a1q2=122=4.故选C. 答案:C,答案:A,4.(2019全国,文14)记Sn为等差数列an的前n项和.若a3=5,a7=13,则S10= . 答案:100,二、等差、等比数列的判定与证明 证明数列an是等差数列或等比数列的方法 (1)证明数列an是等差数列的两种基本方法: 利用定义,证明an+1-an(nN*)为一常数; 利用等差中项,即证明2an=an-1+an+1(n2). (2)证明an是等比数列的两。
9、第1讲 函数与方程思想,答案:C,答案:A,3.(2016全国,理3)已知等差数列an前9项的和为27,a10=8,则a100=( ) A.100 B.99 C.98 D.97,答案:C,4.(2017全国1,理16)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,DBC,ECA,FAB分别是以BC,CA,AB为底边的等腰三角形,沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC,ECA,FAB,使得D,E,F重合,得到三棱锥.当ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 .,1.函数与方程思想的含义,2.函数与方程的思想在解题中的应用,考点1,考点2,考点3,函数与方程思想在不等式中。
10、第2讲 数列求和与数列综合问题,近五年高考试题统计与命题预测,1.(2019全国,文18)记Sn为等差数列an的前n项和.已知S9=-a5. (1)若a3=4,求an的通项公式; (2)若a10,求使得Snan的n的取值范围. 解:(1)设an的公差为d.由S9=-a5得a1+4d=0. 由a3=4得a1+2d=4.于是a1=8,d=-2. 因此an的通项公式为an=10-2n. 由a10知d0,故Snan等价于n2-11n+100,解得1n10.所以n的取值范围是n|1n10,nN.,2.(2019全国,文18)已知an是各项均为正数的等比数列,a1=2,a3=2a2+16. (1)求an的通项公式; (2)设bn=log2an.求数列bn的前n项和. 解:(1)设an的公比为q,由题设得2q2=4q+16,即q2。
11、第3讲 分类讨论思想,2.(2019全国,文20)已知函数f(x)=2x3-ax2+2. (1)讨论f(x)的单调性; (2)当0a3时,记f(x)在区间0,1的最大值为M,最小值为m,求M-m的取值范围.,3.(2017全国,文21)已知函数f(x)=ex(ex-a)-a2x. (1)讨论f(x)的单调性; (2)若f(x)0,求a的取值范围. 解:(1)函数f(x)的定义域为(-,+),f(x)=2e2x-aex-a2=(2ex+a)(ex-a). 若a=0,则f(x)=e2x,在(-,+)单调递增. 若a0,则由f(x)=0得x=ln a. 当x(-,ln a)时,f(x)0.故f(x)在(-,ln a)单调递减,在(ln a,+)单调递增.,分类讨论思想是一种重要的数学思想方法.其基本思路是将一个较复杂的数学问题分解(。
12、第3讲 圆锥曲线综合问题,近五年高考试题统计与命题预测,1.(2019全国,文20)已知F1,F2是椭圆C: (ab0)的两个焦点,P为C上的点,O为坐标原点. (1)若POF2为等边三角形,求C的离心率; (2)如果存在点P,使得PF1PF2,且F1PF2的面积等于16,求b的值和a的取值范围.,2.(2018全国,文20)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与C交于M,N两点. (1)当l与x轴垂直时,求直线BM的方程; (2)证明:ABM=ABN.,1.圆锥曲线中的范围问题 (1)解决这类问题的基本思想是建立目标函数和不等关系. (2)建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达。
13、第4讲 转化与化归思想,解析:,答案:A,2.(2018全国,文9) 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( ),答案:B,3.(2019江苏,10)在平面直角坐标系xOy中,P是曲线y=x+ (x0)上的一个动点,则点P到直线x+y=0的距离的最小值是 .,答案:4,解析:ADBC, 且DAB=30, ABE=30. EA=EB, EAB=30. AEB=120. 在AEB中, EA=EB=2,答案:-1,转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进。
14、7.4 压轴大题2 直线与圆锥曲线,-2-,-3-,-4-,-5-,-6-,-7-,-8-,一、直线与圆 1.一般地,与直线Ax+By+C=0平行的直线方程可设为Ax+By+m=0;与之垂直的直线方程可设为Bx-Ay+n=0. 2.过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+(A2x+B2y+C2)=0(R),但不包括l2. 3.点到直线与两平行线间的距离的使用条件: (1)求点到直线的距离时,应先化直线方程为一般式. (2)求两平行线之间的距离时,应先将方程化为一般式且x,y的系数对应相等.,-9-,4.圆的切线方程常用结论 (1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2. (2)。
15、第2讲 椭圆、双曲线与抛物线,近五年高考试题统计与命题预测,答案:D,答案:D,答案:C,答案:A,5.(2018全国,文11)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1PF2,且PF2F1=60,则C的离心率为( ),答案:D,1.圆锥曲线的定义、标准方程与几何性质,3.直线与圆锥曲线位置关系问题 (1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点. (2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断.设直线l的方程为Ax+By+C=0,圆锥曲线方程为f(x,y)=0. 若a=0,当圆锥曲线是双曲线时,直线l与。
16、第1讲 函数及其应用,近五年高考试题统计与命题预测,答案:D,2.(2019全国,文6)设f(x)为奇函数,且当x0时,f(x)=ex-1,则当x0,f(-x)=e-x-1=-f(x),即f(x)=-e-x+1.故选D. 答案:D,3.(2018全国,文12)已知f(x)是定义域为(-,+)的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+f(50)=( ) A.-50 B.0 C.2 D.50 解析:f(-x)=f(2+x)=-f(x), f(x+4)=f(x+2)+2=-f(x+2)=f(x). f(x)的周期为4.f(x)为奇函数,f(0)=0. f(2)=f(1+1)=f(1-1)=f(0)=0,f(3)=f(-1)=-f(1)=-2,f(4)=f(0).f(1)+f(2)+f(3)+f(4)=0. f(1)+f(2)+f(50)=f(49)+f(50)=f(1)+f(2)=2. 答案:C,4.(。
17、第1讲 参数方程与极坐标,近五年高考试题统计与命题预测,2.(2019全国,文22)在极坐标系中,O为极点,点M(0,0)(00)在曲线C:=4sin 上,直线l过点A(4,0)且与OM垂直,垂足为P. (1)当0= 时,求0及l的极坐标方程; (2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.,4.(2018全国,文22)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2+2cos -3=0. (1)求C2的直角坐标方程; (2)若C1与C2有且仅有三个公共点,求C1的方程.,1.极坐标系的概念 设M是平面内一点,极点O与点M的距离|OM|叫做点M。
18、第1讲 函数与方程思想,2.(2019全国,文14)记Sn为等差数列an的前n项和.若a3=5,a7=13,则S10= . 答案:100,答案:B,4.(2019江苏,8)已知数列an(nN*)是等差数列,Sn是其前n项和.若a2a5+a8=0,S9=27,则S8的值是 . 解析:an为等差数列,设公差为d,a2a5+a8=0,S9=27, 整理得a1+4d=3,即a1=3-4d, 把代入解得d=2,a1=-5. S8=8a1+28d=16. 答案:16,1.函数与方程思想的含义,2.函数与方程的思想在解题中的应用,考点1,考点2,考点3,函数与方程思想在不等式中的应用 例1(1)设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x0,且g(-3)=0,则不等式f(x)g(x)0的解集是 . (2。
19、第1讲 直线与圆,近五年高考试题统计与命题预测,1.(2018全国,理6)直线x+y+2=0分别与x轴、y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则ABP面积的取值范围是( ),答案:A,答案:4,3.(2018全国,理19)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k0)的直线l与C交于A,B两点,|AB|=8. (1)求l的方程. (2)求过点A,B且与C的准线相切的圆的方程.,(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5. 设所求圆的圆心坐标为(x0,y0),则 因此所求圆的方程为 (x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.,一、直线的方程 1.两条直线平行与垂直的判。
20、第1讲 直线与圆,近五年高考试题统计与命题预测,答案:4,2.(2019全国,文21)已知点A,B关于坐标原点O对称,|AB|=4,M过点A,B且与直线x+2=0相切. (1)若A在直线x+y=0上,求M的半径; (2)是否存在定点P,使得当A运动时,|MA|-|MP|为定值?并说明理由. 解:(1)因为M过点A,B,所以圆心M在AB的垂直平分线上.由已知A在直线x+y=0上,且A,B关于坐标原点O对称,所以M在直线y=x上,故可设M(a,a). 因为M与直线x+2=0相切,所以M的半径为r=|a+2|. 故M的半径r=2或r=6.,(2)存在定点P(1,0),使得|MA|-|MP|为定值. 理由如下: 设M(x,y),由已知得M的半径为r=|x+2|,|AO|=2. 因为曲。