13.1.2线段的垂直平分线的性质第十三章轴对称导入新课讲授新课当堂练习课堂小结第1课时线段的垂直平分线的性质和判定八年级数学上(RJ)1.13.1.2线段的垂直平分线的性质第十三章轴对称导入新课讲授新课当堂练习课堂小结第2课时线段垂直平分线的有关作图八年级数学上(RJ)1能用3简单的轴对称图形导入
线段垂直平分线Tag内容描述:
1、4.2 直线、射线、线段一、选择题1. 下列说法错误的是( )A. 平面内过一点有且只有一条直线与已知直线垂直 B. 两点之间的所有连线中,线段最短C.经过两点有且只有一条直线 D. 过一点有且只有一条直线与已知直线平行2平面上的三条直线最多可将平面分成( )部分A 3 B6 C 7 D93如果 A BC 三点在同一直线上,且线段 AB=4CM,BC=2CM,那么 AC 两点之间的距离为( )A 2CM B 6CM C 2 或 6CM D 无法确定4下列说法正确的是( )A延长直线 AB 到 C; B延长射线 OA 到 C; C平角是一条直线; D延长线段 AB 到 C5如果你想将一根细木条固定在墙上,至。
2、4.2 直线、射线、线段第 2 课时 线段的大小比较第 3 课时 线段的性质情景导入 置疑导入 归纳导入 复习导入 类比导入 悬念激趣情景导入 大家认识下面的两位名人吗?图 4235那么,我们现在来比较一下他们的身高(学生七嘴八舌,发表见解:姚明更高一些) 那要是让潘长江老师站到三楼上,姚明站在地面上呢?(这样就没有可比性)如果我们用线段来表示人的身高,又如何比较线段的长短呢?从而引入课题说明与建议 说明:利用名人,把现实生活中的问题转化为数学中的探索问题,激发学生的学习兴趣,在具体问题中设问,在解答问题 中形成认知冲突,激。
3、4.2 直线、射线、线段第 1课时 直线、射线、线段的概念情景导入 置疑导入 归纳导入 复习 导入 类比导入 悬念激趣情景导入 数学离不开生活,生活中处处有数学让我们一起看几个图片,共同感受一下身边的数学图 421绷紧的琴弦,手电筒射出的光线,向两方无限延伸的笔直的铁轨,它们可以分别抽象出哪些简单的平面图形?说明与建议 说明:教师通过学生熟悉的场景和事物引出所学内容,使学生感受到数学就在我们身边,数学离不开生活,渗透善于观察生活中的数学的学习意识同时也激发了学生的学习兴趣,加强了非智力因素的培养建议:重点让学生明。
4、第四章 几何图形初步,4.2 直线、射线、线段,第四章 几何图形初步,第1课时 直线、射线、线段的概念,第1课时 直线、射线、线段的概念,探究新知,活动1 知识准备,1填空:点动成_;线动成_;面动成_ 2画图:请你画出一条直线、一条射线、一条线段,答案 略,线,面,体,第1课时 直线、射线、线段的概念,活动2 教材导学,(1)经过一点O可以画几条直线? (2)经过两点A,B可以画直线吗?可以画几条?,答案 (1)无数条 (2)可以,1条,。
5、第1课时 直线、射线、线段的概念,知识目标,目标突破,第四章 几何图形初步,总结反思,知识目标,第1课时 直线、射线、线段的概念,1通过列举生活实例、动手画线,掌握基本事实:两点确定一条直线,并会用这个基本事实解决简单的实际问题 2通过观察、比较、讨论、归纳,理解直线、射线和线段三者之间的区别与联系,并会根据要求画直线、射线和线段 3通过观察图形、阅读教材,直观地了解平面上点和直线、直线和直线的位置关系,第1课时 直线、射线、线段的概念,目标一 会用“两点确定一条直线”解决实际问题,目标突破,B,第1课时 直线、射线、线段。
6、4.1 比例线段,第四章 图形的相似,第1课时 线段的比和成比例线段,导入新课,讲授新课,当堂练习,课堂小结,1.知道线段的比的概念,会计算两条线段的比;(重点) 2理解成比例线段的概念;(重点) 3掌握成比例线段的判定方法(难点),学习目标,问题1 下面两张邮票有什么特点?有什么关系?,导入新课,观察与思考,问题2 多啦A梦的2寸照片和4寸照片,它的形状改变了吗?大小呢?,讲授新课,如果选用同一个长度单位得两条先线段AB,CD的长度分别是m , n,那么这两条线段的比就是它们长度的比,即,A,B,C,D,m,n,AB:CD= m : n 或,如果把 表示成比值k,那。
7、2.4 线段的垂直平分线,如图,人字形屋顶的框架中,点A与点A关于线段CD所在的直线l 对称,问线段CD所在的直线l 与线段AA有什么关系?,新知探究,我们可以把人字形屋顶框架图进行简化得到下图.,已知点A与点A关于直线l 对称,如果沿直线l折叠,则点A与点A重合,AD=AD,1=2= 90,即直线l 既平分线段AA,又垂直线段AA.,l,A,A,D,2,1,(A),我们把垂直且平分一条线段的直线叫作这条线段的垂直平分线.,由上可知:线段是轴对称图形,线段的垂直平分线是它的对称轴.,新知归纳,如图,在线段AB的垂直平分线l 上任取一点P,连接PA,PB,线段PA,PB之间有什。
8、线段的垂直平分线第2课时,判定定理: 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。,性质定理: 线段垂直平分线上的点和这条线段两个端点的距离相等。,线段的垂直平分线可以看作和线段两个端点距离相等的所有点的集合.,点到线段两个端点距离相等,这个点在这条线段的垂直平分线上,例1 如图16-2-12,已知线段AB. 求作:线段AB的垂直平分线.,分析:由线段垂直平分线性质定理的逆定理,只。
9、2.4 线段的垂直平分线第1课时,课前复习 1、什么叫轴对称图形?什么叫对称轴?,如果一个图形沿着一条线折叠,两侧的图形能够完全重合,这样的图形就是轴对称图形.,折痕所在的直线就是轴对称图形的对称轴.,2、什么叫两个图形成轴对称?,如果把一个图形沿着某一直线折叠,能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也称为这两个图形成轴对称,这条直线也叫作对称轴,互相重合的两个点,其中一点叫作。
10、13.1 轴对称 13.1.2 线段的垂直平分线的性质,第一课时,第二课时,第一课时,线段的垂直平分线的性质,某区政府为了方便居民的生活,计划在三个住宅小区A、B、C之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等?,A,B,C,实际问题1,A,B,L,实际问题2,在成渝高速公路L的同侧,有两个化工厂A、B,为了便于两厂的工人看病,市政府计划在公路边上修建一所医院。
11、 一、选择题一、选择题 5(2019泰州泰州) 如图所示的网格由边长相同的小正方形组成,点 A、B、C、D、E、F、G 在小正方形的顶点上, 则 ABC 的重心是( ) A.点 D B.点 E C.点 F D.点 G 第 5 题图 【答案答案】A 【解析】【解析】 三角形的重心是三条中线的交点,由图中可知,ABC 的三边的中点都在格点上,三条中线如图所示交于点 D,故选 A. 第 5 题图。
12、第 1 页 / 共 18 页 专题专题 15 15 线段垂直平分线问题线段垂直平分线问题 1. 1. 线段的垂直平分线定义线段的垂直平分线定义 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线 2.2.线段垂直平分线的做法线段垂直平分线的做法 求作线段 AB 的垂直平分线. 作法: (1)分别以点 A,B 为圆心,以大于 AB/2 的长为半径作弧,两弧相交于 C。
13、第 1 页 / 共 7 页 专题专题 15 15 线段垂直平分线问题线段垂直平分线问题 1. 1. 线段的垂直平分线定义线段的垂直平分线定义 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线 2.2.线段垂直平分线的做法线段垂直平分线的做法 求作线段 AB 的垂直平分线. 作法: (1)分别以点 A,B 为圆心,以大于 AB/2 的长为半径作弧,两弧相交于 C,。
14、 知识点知识点 22 线段垂直平分线、角平分线、中位线线段垂直平分线、角平分线、中位线 一、选择题一、选择题 6(2020 枣庄)如图,在 ABC 中,AB 的垂直平分线交 AB 于点 D,交 BC 于点 E,连接 AE若 BC=6,AC=5,则 ACE 的周长为( ) A8 B11 C16 D17 答案B解析利用线段垂直平分线的性质进行等线段间的转换, 然后整体求值 DE 垂直 平分 AB,。
15、3 简单的轴对称图形,导入新课,讲授新课,当堂练习,课堂小结,第五章 生活中的轴对称,第2课时 线段垂直平分线的性质,北师大版七年级数学下教学课件,1.理解线段的垂直平分线的概念; 2.理解并掌握线段垂直平分线的性质(重点) 3.能够运用线段垂直平分线的性质解决实际问题 (难点),1.什么样的图形叫作轴对称图形?,把一个图形沿着某条直线对折,如果对折的两部分是完全重合的,我们就称这样的图形为轴对称图形,这条直线叫作这个图形的对称轴.,复习巩固,2.下列图形哪些是轴对称图形?,线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗。
16、 一、选择题一、选择题 5(2019泰州泰州) 如图所示的网格由边长相同的小正方形组成,点 A、B、C、D、E、F、G 在小正方形的顶点上, 则 ABC 的重心是( ) A.点 D B.点 E C.点 F D.点 G 第 5 题图 【答案答案】A 【解析】【解析】 三角形的重心是三条中线的交点,由图中可知,ABC 的三边的中点都在格点上,三条中线如图所示交于点 D,故选 A. 第 5 题图 4 (2019盐城)盐城)如图,点 D、E 分别是ABC 边 BA、BC 的中点,AC3,则 DE 的长为( ) A2 B C3 D 【答案】【答案】D 【解析】【解析】由中位线的定义可知 DE 是ABC 的中位线,进而由中位线的性。
17、一、选择题1 (2018 北京市东城区初二期末)如图,在ABC 中, B=C=60 ,点 D 为 AB 边的中点,DEBC 于 E, 若 BE=1,则 AC 的长为 EDAB C A2 B C4 D 323解:C2.(2018 北京市平谷区初二期末)如图,在 RtABC 中,C=90 ,点 D 为 AB 边中点,DEAB,并与 AC 边交于点 E. 如果A=15 ,BC=1,那么 AC 等于( ).A. 2 B. 31C. D.3答案:C3. (2018 北京市顺义区八年级期末)如图,AD 是 ABC 的角平分线,DEAB 于点 E,SAB C=10,DE =2,AB= 4, 则 AC 长是A.9 B. 8 C. 7 D. 6答案:D4 (2018 北京市西城区八年级期末)如图,在ABC 中,BC 的 垂。
18、3 简单的轴对称图形,导入新课,讲授新课,当堂练习,课堂小结,第五章 生活中的轴对称,第2课时 线段垂直平分线的性质,1.理解线段的垂直平分线的概念; 2.理解并掌握线段垂直平分线的性质(重点) 3.能够运用线段垂直平分线的性质解决实际问题 (难点),1.什么样的图形叫作轴对称图形?,把一个图形沿着某条直线对折,如果对折的两部分是完全重合的,我们就称这样的图形为轴对称图形,这条直线叫作这个图形的对称轴.,复习巩固,2.下列图形哪些是轴对称图形?,线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗?这条对称轴与线段存在着什么关。
19、13.1.2 线段的垂直平分线的性质,第十三章 轴对称,导入新课,讲授新课,当堂练习,课堂小结,第2课时 线段垂直平分线的有关作图,八年级数学上(RJ),1能用尺规作已知线段的垂直平分线(难点) 2进一步了解尺规作图的一般步骤和作图语言,理解作图的依据 3能够运用尺规作图的方法解决简单的作图问题(重点),导入新课,情境引入,如图,A,B是路边两个新建小区,要在公路边增设一个公共汽车站,使两个小区到车站的路程一样长,该公共汽车站应建在什么地方?,A,B,讲授新课,互动探究,问题1:有时我们感觉一(两)个平面图形是轴对称的,如何验证呢?,。
20、13.1.2 线段的垂直平分线的性质,第十三章 轴对称,导入新课,讲授新课,当堂练习,课堂小结,第1课时 线段的垂直平分线的性质和判定,八年级数学上(RJ),1.理解并掌握线段的垂直平分线的性质和判定方法 (重点) 2.会用尺规过一点作已知直线的垂线. 3.能够运用线段的垂直平分线的性质和判定解决实际问题(难点),导入新课,问题引入,某区政府为了方便居民的生活,计划在三个住宅小区A、B、C之间修建一个购物中心,试问该购物中心应建于何处,才能使得它到三个小区的距离相等?,A,B,C,讲授新课,如图,直线l垂直平分线段AB,P1,P2,P3,是l 上的点。