欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

线段的垂直平分线

13.1.2 线段的垂直平分线的性质,第十三章 轴对称,导入新课,讲授新课,当堂练习,课堂小结,第2课时 线段垂直平分线的有关作图,八年级数学上(RJ),1能用尺规作已知线段的垂直平分线(难点) 2进一步了解尺规作图的一般步骤和作图语言,理解作图的依据 3能够运用尺规作图的方法解决简单的作图问题(重

线段的垂直平分线Tag内容描述:

1、13.1.2 线段的垂直平分线的性质,第十三章 轴对称,导入新课,讲授新课,当堂练习,课堂小结,第2课时 线段垂直平分线的有关作图,八年级数学上(RJ),1能用尺规作已知线段的垂直平分线(难点) 2进一步了解尺规作图的一般步骤和作图语言,理解作图的依据 3能够运用尺规作图的方法解决简单的作图问题(重点),导入新课,情境引入,如图,A,B是路边两个新建小区,要在公路边增设一个公共汽车站,使两个小区到车站的路程一样长,该公共汽车站应建在什么地方?,A,B,讲授新课,互动探究,问题1:有时我们感觉一(两)个平面图形是轴对称的,如何验证呢?,。

2、2.4 线段的垂直平分线第1课时,课前复习 1、什么叫轴对称图形?什么叫对称轴?,如果一个图形沿着一条线折叠,两侧的图形能够完全重合,这样的图形就是轴对称图形.,折痕所在的直线就是轴对称图形的对称轴.,2、什么叫两个图形成轴对称?,如果把一个图形沿着某一直线折叠,能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也称为这两个图形成轴对称,这条直线也叫作对称轴,互相重合的两个点,其中一点叫作。

3、 专题专题 15 15 线段垂直平分线问题线段垂直平分线问题 1. 1. 线段的垂直平分线定义线段的垂直平分线定义 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线 2.2.线段垂直平分线的做法线段垂直平分线的做法 求作线段 AB 的垂直平分线. 作法:(1)分别以点 A,B 为圆心,以大于 AB/2 的长为半径作弧,两弧相交于 C,D 两点; 说明:作弧时的半。

4、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第03讲-垂直平分线与角平分线 授课类型T同步课堂P实战演练S归纳总结教学目标 能够证明线段垂直平分线的性质定理、判定定理以及三角形三边的垂直平分线的性质定理; 掌握角平分线的性质定理、判定定理以及相关结论;授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、线段垂直平分线的性质定理定理:线段垂直平分线上的点到这条线段两个端点的距离相等。2、线段垂直平分线性质定理的逆定理(判定定理)定理:到一条。

5、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第03讲-垂直平分线与角平分线 授课类型T同步课堂P实战演练S归纳总结教学目标 能够证明线段垂直平分线的性质定理、判定定理以及三角形三边的垂直平分线的性质定理; 掌握角平分线的性质定理、判定定理以及相关结论;授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、线段垂直平分线的性质定理定理:线段垂直平分线上的点到这条线段两个端点的距离相等。2、线段垂直平分线性质定理的逆定理(判定定理)定理:到一条。

6、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第03讲-垂直平分线与角平分线 授课类型T同步课堂P实战演练S归纳总结教学目标 能够证明线段垂直平分线的性质定理、判定定理以及三角形三边的垂直平分线的性质定理; 掌握角平分线的性质定理、判定定理以及相关结论;授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、线段垂直平分线的性质定理定理:线段垂直平分线上的点到这条线段两个端点的距离相等。2、线段垂直平分线性质定理的逆定理(判定定理)定理:到一条。

7、3 简单的轴对称图形,导入新课,讲授新课,当堂练习,课堂小结,第五章 生活中的轴对称,第2课时 线段垂直平分线的性质,1.理解线段的垂直平分线的概念; 2.理解并掌握线段垂直平分线的性质(重点) 3.能够运用线段垂直平分线的性质解决实际问题 (难点),1.什么样的图形叫作轴对称图形?,把一个图形沿着某条直线对折,如果对折的两部分是完全重合的,我们就称这样的图形为轴对称图形,这条直线叫作这个图形的对称轴.,复习巩固,2.下列图形哪些是轴对称图形?,线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗?这条对称轴与线段存在着什么关。

8、2.4 线段的垂直平分线同步检测一、选择题1.如图,ABC,AB=AC ,AD 为ABC 的角平分线,过 AB 的中点 E 作 AB 的垂线交 AC 于点 F,连接 BF,若 AB=5,CD=2,则BFC 的周长为( )A. 7 B. 9 C. 12 D. 142.如图,在 RtABC 中,B=90,ED 是 AC 的垂直平分线,交 AC 于点 D,交 BC 于点 E已知BAE=10,则C 的度数为( ) A. 30 B. 40 C. 50 D. 603.如图,在ABC 中,ADE 的周长为 8,DH 为 AB 的中垂线,EF 垂直平分 AC,则 BC 的长为( )A. 4 B. 6 C. 8 D. 164.如图,在ABC 中,已知 AB=AC,DE 垂直平分 AC,且 AC=8,BC=6 ,则BDC 的周长为( 。

9、 一、选择题一、选择题 5(2019泰州泰州) 如图所示的网格由边长相同的小正方形组成,点 A、B、C、D、E、F、G 在小正方形的顶点上, 则 ABC 的重心是( ) A.点 D B.点 E C.点 F D.点 G 第 5 题图 【答案答案】A 【解析】【解析】 三角形的重心是三条中线的交点,由图中可知,ABC 的三边的中点都在格点上,三条中线如图所示交于点 D,故选 A. 第 5 题图。

10、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第07讲-垂直平分线与角平分线 授课类型T同步课堂P实战演练S归纳总结教学目标 能够证明线段垂直平分线的性质定理、判定定理以及三角形三边的垂直平分线的性质定理; 掌握角平分线的性质定理、判定定理以及相关结论;授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、线段垂直平分线的性质定理定理:线段垂直平分线上的点到这条线段两个端点的距离相等。2、线段垂直平分线性质定理的逆定理(判定定理)定理:到一条。

11、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第07讲-垂直平分线与角平分线 授课类型T同步课堂P实战演练S归纳总结教学目标 能够证明线段垂直平分线的性质定理、判定定理以及三角形三边的垂直平分线的性质定理; 掌握角平分线的性质定理、判定定理以及相关结论;授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、线段垂直平分线的性质定理定理:线段垂直平分线上的点到这条线段两个端点的距离相等。2、线段垂直平分线性质定理的逆定理(判定定理)定理:到一条。

12、角平分线与线段的垂直平分线角平分线与线段的垂直平分线 (知识点总结(知识点总结+ +例题讲解)例题讲解) 一、角平分线:一、角平分线: 1.1.角的平分线定义:角的平分线定义: (1)从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线;如图, 因为 AD 是BAC 的平分线,所以1=2=BAC; (2)类似地,还有角的三等分线等。 2.角平分线的作法(尺规作图): (1)以点 。

13、2.4 线段的垂直平分线,如图,人字形屋顶的框架中,点A与点A关于线段CD所在的直线l 对称,问线段CD所在的直线l 与线段AA有什么关系?,新知探究,我们可以把人字形屋顶框架图进行简化得到下图.,已知点A与点A关于直线l 对称,如果沿直线l折叠,则点A与点A重合,AD=AD,1=2= 90,即直线l 既平分线段AA,又垂直线段AA.,l,A,A,D,2,1,(A),我们把垂直且平分一条线段的直线叫作这条线段的垂直平分线.,由上可知:线段是轴对称图形,线段的垂直平分线是它的对称轴.,新知归纳,如图,在线段AB的垂直平分线l 上任取一点P,连接PA,PB,线段PA,PB之间有什。

14、 线段的垂直平分线与角平分线 第2讲 适用学科 初中数学 适用年级 初中二年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1.线段的垂直平分线 2.角平分线 教学目标 1.线段的垂直平分线的性质及应用 2.角平分线的性质及应用 教学重点 1.线段的垂直平分线的性质及应用 2.角平分线的性质及应用 教学难点 1.线段的垂直平分线的性质及应用 2.角平分线的性质及应用 。

15、 一、选择题一、选择题 5(2019泰州泰州) 如图所示的网格由边长相同的小正方形组成,点 A、B、C、D、E、F、G 在小正方形的顶点上, 则 ABC 的重心是( ) A.点 D B.点 E C.点 F D.点 G 第 5 题图 【答案答案】A 【解析】【解析】 三角形的重心是三条中线的交点,由图中可知,ABC 的三边的中点都在格点上,三条中线如图所示交于点 D,故选 A. 第 5 题图 4 (2019盐城)盐城)如图,点 D、E 分别是ABC 边 BA、BC 的中点,AC3,则 DE 的长为( ) A2 B C3 D 【答案】【答案】D 【解析】【解析】由中位线的定义可知 DE 是ABC 的中位线,进而由中位线的性。

16、教师姓名 学生姓名 年 (尚孔教研院彭高钢(尚孔教研院彭高钢级 初二 上课时间 学 (尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢科 数学 课题名称 线段的垂直平分线与角的平分线线段的垂直平分线与角的平分线 待提升的知 识点/题型 (尚孔教研院彭高钢)(尚孔教研院彭高钢)知识梳理知识梳理(尚孔教研院彭高钢)(尚孔教研院彭高钢) (尚孔教研院彭高钢(尚孔教研院彭高钢知识点一:逆命题和逆定理知识点一:逆命题和逆定理 1.逆命题逆命题 在两个命题中, 如果第一个命题的题设是第二个命题的结论, 而。

17、 线段的垂直平分线与角平分线 第2讲 适用学科 初中数学 适用年级 初中二年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1.线段的垂直平分线 2.角平分线 教学目标 1.线段的垂直平分线的性质及应用 2.角平分线的性质及应用 教学重点 1.线段的垂直平分线的性质及应用 2.角平分线的性质及应用 教学难点 1.线段的垂直平分线的性质及应用 2.角平分线的性质及应用 。

18、教师姓名 学生姓名 年 (尚孔教研院彭高钢(尚孔教研院彭高钢级 初二 上课时间 学 (尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢科 数学 课题名称 线段的垂直平分线与角的平分线线段的垂直平分线与角的平分线 待提升的知 识点/题型 (尚孔教研院彭高钢)(尚孔教研院彭高钢)知识梳理知识梳理(尚孔教研院彭高钢)(尚孔教研院彭高钢) (尚孔教研院彭高钢(尚孔教研院彭高钢知识点一:逆命题和逆定理知识点一:逆命题和逆定理 1.逆命题逆命题 在两个命题中, 如果第一个命题的题设是第二个命题的结论, 而。

19、13.1 轴对称 13.1.2 线段的垂直平分线的性质,第一课时,第二课时,第一课时,线段的垂直平分线的性质,某区政府为了方便居民的生活,计划在三个住宅小区A、B、C之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等?,A,B,C,实际问题1,A,B,L,实际问题2,在成渝高速公路L的同侧,有两个化工厂A、B,为了便于两厂的工人看病,市政府计划在公路边上修建一所医院。

20、一、选择题1 (2018 北京市东城区初二期末)如图,在ABC 中, B=C=60 ,点 D 为 AB 边的中点,DEBC 于 E, 若 BE=1,则 AC 的长为 EDAB C A2 B C4 D 323解:C2.(2018 北京市平谷区初二期末)如图,在 RtABC 中,C=90 ,点 D 为 AB 边中点,DEAB,并与 AC 边交于点 E. 如果A=15 ,BC=1,那么 AC 等于( ).A. 2 B. 31C. D.3答案:C3. (2018 北京市顺义区八年级期末)如图,AD 是 ABC 的角平分线,DEAB 于点 E,SAB C=10,DE =2,AB= 4, 则 AC 长是A.9 B. 8 C. 7 D. 6答案:D4 (2018 北京市西城区八年级期末)如图,在ABC 中,BC 的 垂。

【线段的垂直平分线】相关PPT文档
青岛版八年级数学上2.4 线段的垂直平分线(第1课时)课件
北师大版七年级数学下册《5.3.2线段垂直平分线的性质》课件
湘教版八年级数学上《2.4线段的垂直平分线》课件
13.1.2 线段的垂直平分线的性质ppt课件(共55张ppt)
【线段的垂直平分线】相关DOC文档
2021年中考数学专题复习 专题15 线段垂直平分线问题(教师版含解析)
八年级下册数学同步课程第03讲-垂直平分线与角平分线(培优)-学案
八年级下册数学同步课程第03讲-垂直平分线与角平分线(提高)-学案
八年级下册数学同步课程第03讲-垂直平分线与角平分线(提高)-教案
湘教版八年级数学上册《2.4线段的垂直平分线》同步练习(含答案)
2020年中考数学第一轮复习知识点24线段垂直平分线、角平分线、中位线
初二数学寒假班讲义第07讲-垂直平分线与角平分线(提高)-学案
初二数学寒假班讲义第07讲-垂直平分线与角平分线(提高)-教案
【BSD版春季课程初二数学】第2讲线段的垂直平分线与角平分线-教案(教师版)
知识点24线段垂直平分线、角平分线、中位线2019中考真题分类汇编
著名机构讲义秋季教案17-初二数学-线段的垂直平分线与角的平分线 - 教师版
著名机构讲义秋季教案17-初二数学-线段的垂直平分线与角的平分线 - 学生版
2019年北京中考数学习题精选:线段垂直平分线、角平分线、中位线
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开