2.5 全等三角形-第二课时,如图,在ABC和 中,如果A=A, B= B, ,那么ABC和 全等吗?,新知探究,根据三角形内角和定理,可将上述条件转化为满足“ASA”的条件,从而可以证明ABC,在ABC和 中,, A = A,B = B,, C =C.,又 ,B=B,, (ASA).,由此得到判定
湘教版八年级数学上2.6用尺规作三角形课件Tag内容描述:
1、2.5 全等三角形-第二课时,如图,在ABC和 中,如果A=A, B= B, ,那么ABC和 全等吗?,新知探究,根据三角形内角和定理,可将上述条件转化为满足“ASA”的条件,从而可以证明ABC,在ABC和 中,, A = A,B = B,, C =C.,又 ,B=B,, (ASA).,由此得到判定两个三角形全等的定理:,两角分别相等且其中一组等角的对边相等的两个三角形全等.,通常可简写成“角角边”或“AAS”.,新知归纳,例5 已知:如图,B=D,1=2,求证:ABCADC.,证明 1 =2,,ACB=ACD(同角的补角相等).,在ABC和ADC中,, ABCADC (AAS).,例题讲解,例题讲解,例6 已知:如图,点B,。
2、2.6 直角三角形(2),1、什么叫直角三角形?,2、直角三角形的性质有哪些?,旧知回顾,A+B=90,直角三角形斜边上的中线等于斜边的一半,D,数学语言表述为: 在RtABC中 CD是斜边AB上的中线 CDADBD AB (直角三角形斜边上的中线等于斜边的一半),根据等腰三角形的判定,请你思考如何判定一个三角形是直角三角形?,探究新知,有两个角互余的三角形是直角三角形.,直角三角形的判定定理:,如果一个三角形一条边上的中线等于这条边的一半,那么这个三角形一定是直角三角形吗?你认为对吗?请画图进行说明.,这是我们判定直角三角形的另一种方法,例2 如。
3、2.6 直角三角形(1),锐角三角形 直角三角形 钝角三角形,有一个角是钝角.,三角形按角的分类,三个角都是锐角.,有一个角是直角.,你能举出生活中用到直角三角形的例子吗?,探究新知,三角形,直角三角形:,有一个内角是直角的三角形.,直角三角形表示:,RtABC,直角边,直角边,斜边,a,b,Rt,探究归纳,直角三角形的内角有什么特点?,直角三角形有一个内角是直角,另外两个锐角互余.,说一说,直角三角形的两个锐角互余.,直角三角形的性质:,判断三角形ABC是否直角三角形:,1. A:B:C=1:2:3,2. A:B:C=2:3:5,3. A:B:C=3:4:5,4. A:B:C=1:1:2,小试身手,如图,CD。
4、2.6 等腰三角形第3课时,回顾 我们曾经见过什么特殊三角形?,一般三角形,一般三角形,两条边相等,等腰三角形,等腰三角形,底腰 底腰,等边三角形,等边三角形,特殊的等腰三角形:三条边都相等的三角形叫做等边三角形.,猜想一: 等边三角形的三个内角都相等,并且每一个角都等于60.,已知:ABACBC. 求证:ABC60.,证明:ABAC,BC. 同理 AB, ABC. 又AB。
5、2.3 等腰三角形,我们前面已经学习了三角形的一些性质,那么等腰三角形除了具有一般三角形的性质外,还具有哪些特殊的性质呢?,新知探究,任意画一个等腰三角形ABC,其中AB=AC,如图.,作ABC 关于顶角平分线AD所在直线的轴反射,,由于1=2,AB=AC,因此:,D,1,2,射线AB的像是射线AC, 射线AC的像是射线 ; 线段AB的像是线段AC, 线段AC的像是线段 ; 点B的像是点C, 点C的像是点 ; 线段BC的像是线段CB. 从而等腰三角形ABC关于直线 对称.,AB,AB,B,AD,由于点D的像是点D, 因此线段DB的像是线段 , 从而AD是底边BC上的 . 由于射线DB的像是射线DC。
6、,三角形,教学课件,湘教版八年级上册,01 新课导入,目录,03 典型例题,02 新知探究,04 拓展提高,05 课堂小结,06 作业布置,01 新课导入,新课导入,对于生活中的这些图形,同学们能找出其中三角形吗?又是怎样找出来的呢?下面我们就来学习有关三角形的数学知识。,02 新知探究,新知探究,三角形的概念,观察下面三角形的形成过程,说一说什么叫三角形?,定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.,A,B,C,三角形中有几条线段?有几个角?,有三条线段,三个角. 边:线段AB,BC,CA是三角形的边, 顶点:点A,B,C是三角形。
7、2.1 三角形,观察下图,找一找图中的三角形,并把它们勾画出来. 你还能举出一些实例吗?,新知探究,不在同一直线上的三条线段首尾相接所构成的图形叫作三角形.,新知归纳,三角形可用符号“”来表示,如图中的三角形可记作“ABC”,读作“三角形ABC”.,新知归纳,其中,点A,B,C叫作ABC的顶点;,A,B,C叫作ABC的内角(简称ABC的角);,线段AB,BC,CA叫作ABC的边.,通常A,B,C的对边BC,AC,AB 可分别用a,b,c来表示.,新知探究,三角形中,有的三边各不相等,有的两边相等,有的三边都相等.,两条边相等的三角形叫作等腰三角形.,新知探究,在等。
8、2.6 用尺规作三角形同步检测一、选择题1.下列作图语言规范的是( ) A. 过点 P 作线段 AB 的中垂线 B. 过点 P 作AOB 的平分线C. 在直线 AB 的延长线上取一点 C,使 AB=AC D. 过点 P 作直线 AB 的垂线2.如图,在ABC 中,C=90,CAB=50,按以下步骤作图: 以点 A 为圆心,小于 AC 长为半径画弧,分别交 AB、AC 于点 E、F;分别以点 E、F 为圆心,大于 EF 长为半径画弧,两弧相交于点 G;作射线 AG , 交 BC 边于点 D 则ADC 的度数为( ) A. 40 B. 55 C. 65 D. 753.某探究性学习小组仅利用一副三角板不能完成的操作是( )A. 作已知直线的平。