第1章 直角三角形,1.1 直角三角形的性质和判定(),第1课时 直角三角形的性质和判定,目标突破,总结反思,第1章 直角三角形,知识目标,第1课时 直角三角形的性质和判定,知识目标,1根据三角形内角和定理,结合直角三角形的一个内角是直角的特征,理解直角三角形两锐角互余的性质 2通过对三角形中角的认
湘教版八年级数学下册2.1多边形第1课时多边形的内角和课件Tag内容描述:
1、第1章 直角三角形,1.1 直角三角形的性质和判定(),第1课时 直角三角形的性质和判定,目标突破,总结反思,第1章 直角三角形,知识目标,第1课时 直角三角形的性质和判定,知识目标,1根据三角形内角和定理,结合直角三角形的一个内角是直角的特征,理解直角三角形两锐角互余的性质 2通过对三角形中角的认识,归纳出“有两个角互余的三角形是直角三角形”的结论,并运用此结论对三角形的形状进行判定 3通过实际测量,对比斜边上的中线、斜边的长度归纳出“直角三角形斜边上的中线等于斜边的一半”的性质,并能灵活应用此性质,目标突破,目标一 理解。
2、,第 8 课时 多边形的内角和,第 七 单元 三角形、平行四边形和梯形,A,B,C,D,E,F,1804 -180 =540,想一想,这个也不错哦,1804 -180 =540,为了求得n边形的内角和,请根据下图所示,完成表格。,1,2,3,4,n2,180,540,(n2)180,360,720,我终于得到了本节课的结论啦,2、已知一个多边形,它的内角和 等于720, 求这个多边形的边数。,观察上面的图形,我们发现:三角形的内角和是180,只有一个三角形,四边形中含有2个三角形,内角和就为1802=360,五边形中含有3个三角形,内角和就为1803=540,那我们就可以发现六边形中含有4个三角形,内角和也就是180。
3、1课时作业(十)2.1 第 2 课时 多边形的外角和 一、选择题12018雅安已知 n 边形的每个外角都等于 60,则它的内角和是( )链 接 听 课 例 2归 纳 总 结A180 B270 C360 D7202. 一个正多边形的内角和为 540,则这个正多边形的每一个外角都等于( )A60 B72 C90 D10832017莱芜一个多边形的内角和比其外角和的 2 倍多 180,则该多边形的对角线的条数是( )A12 B13 C14 D1542016十堰如图 K101,小华从点 A 出发,沿直线前进 10 米后左转 24,再沿直线前进 10 米,又向左转 24照这样走下去,他第一次回到出发地点 A 时,一共走的路程是( )图 K101A140 。
4、1课时作业(九)2.1 第 1 课时 多边形的内角和 一、选择题1从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把这个七边形分割成的三角形的个数为( )A6 B5 C8 D72正八边形的每一个内角的度数为( )链 接 听 课 例 2归 纳 总 结A120 B135 C140 D1443多边形的边数由 7 增加到 8,它的内角和增加( )A360 B270 C180 D9042017苏州如图 K91,在正五边形 ABCDE 中,连接 BE,则ABE 的度数为( )图 K91A30 B36 C54 D7252017宜昌如图 K92,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,那么图 K92 四种剪法中,符合要。
5、第2章 四边形,2.1 多边形,第1课时 多边形的内角和,目标突破,总结反思,第2章 四边形,知识目标,2.1 多边形,知识目标,1通过类比三角形的边、角,能识别多边形、多边形的顶点、边、内角、对角线及正多边形等概念 2利用对角线的分割,探究出多边形的内角和公式,并能应用其公式去解决内角和及求多边形的边数等问题,目标突破,目标一 能认识多边形,例1 教材补充例题 已知正n边形的周长为60,边长为a. (1)当n3时,请直接写出a的值; (2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n7,周长为67,边长为b.有人分别取n等。