三角形的中位线【基础练习】知识点 三角形的中位线1如图 1,在ABC 中,D,E 分别是 AB,AC 的中点若 DE2 cm,则 BC 边的长为( )图 1A. 1 cm B. 2 cm C. 3 cm D. 4 cm2.如图 2,在等边三角形 ABC 中,D,E 分别为边 AB,AC 的中点,则D
湘教版八年级数学下册4.1.2函数的表示法同步练习含答案Tag内容描述:
1、三角形的中位线【基础练习】知识点 三角形的中位线1如图 1,在ABC 中,D,E 分别是 AB,AC 的中点若 DE2 cm,则 BC 边的长为( )图 1A. 1 cm B. 2 cm C. 3 cm D. 4 cm2.如图 2,在等边三角形 ABC 中,D,E 分别为边 AB,AC 的中点,则DEC 的度数为( )图 2A30 B60 C120 D15032017宜昌 如图 3,要测定被池塘隔开的 A,B 两点间的距离,可以在 AB 外选一点 C,连接 AC,BC,并分别找出它们的中点 D,E,连接 DE.现测得 AC30 m,BC40 m,DE24 m,则 AB 的长为( )图 3A50 m B48 m C45 m D35 m42018南充 如图 4,在 RtABC 中,ACB90,A30,D,E,。
2、6.3 反比例函数的应用A 练就好基础 基础达标1面积为 2 的直角三角形一直角边长为 x,另一直角边长为 y,则 y 与 x 的变化规律用图象大致表示为( C )A BC D2某蓄电池的电压为定值,使用此电源时,电流 I(A)是电阻 R() 的反比例函数,其图象如图所示,当 R 为 10 时,电流 I 是( B )A3 A B3.6 A C4 A D 6 A第 2 题图 第 3 题图3如图所示,点 M(2,a) 在反比例函数 y 的图象上,连结 MO 并延长交图象的另一分支6x于点 N,则线段 MN 的长是( D )A3 B. C6 D213 134某村耕地总面积为 50 公顷,且该村人均耕地面积 y(单位:公顷 /人)与总人口 x(。
3、角平分线的性质的综合应用知识点 角平分线性质的综合应用1如图 1417,OP 平分AOB,PAOA,PBOB,垂足分别为 A,B.下列判断错误的是( )图 1417APAPB BPO 平分APBCOAOB DAB 垂直平分 OP2.如图 1418,OP 是AOB 的平分线,点 P 到 OA 的距离 PE3,N 是 OB 上的任意一点,则线段 PN 的取值范围为( )图 1418APN3 CPN3 DPN33教材“动脑筋”变式 如图 1419,已知 ABCD,BP 和 CP 分别平分ABC 和DCB,AD 过点 P,且与 AB 垂直,PEBC 于点 E,若 PE4,则 AD 的长为( )图 1419A8 B6 C4 D24.如图 1420,AD 是ABC 中BAC 的平分线,DEAB 于点 E,SABC7,D。
4、一次函数与一次方程的关系夯实基础知识点 1 二元一次方程与一次函数的关系1把方程 x14y 化为 ykxb 的形式,正确的是( )x3Ay x1 By x13 16 14Cy x1 Dy x16 13 142以二元一次方程 3x2y6 的解为坐标的点都在某一次函数的图象上,则这个一次函数是( )Ay3x6 By3x6Cy x3 Dy x332 323下面四条直线,其中直线上每个点的坐标都是二元一次方程 x2y2 的解的是( )图 45174已知一次函数 y x ,当函数值 y0 时,自变量 x_32 125把下列二元一次方程改写成 ykxb 的形式(1)5xy3; (2)x5y4;(3)5x2y3; (4) x y1.12 23知识点 2 一元一次方程与一次函数的关系。
5、用待定系数法确定一次函数表达式夯实基础知识点 1 用待定系数法求一次函数表达式1如果直线 ykxb 经过点(5,1)和点(3,3),那么 k,b 的值分别是( )A2, 3 B1,6 C1,6 D ,12 322下表给出了一次函数的自变量 x 与函数 y 的三组对应值,则该一次函数的表达式为( )x 2 1 2y 3 0 1A.yx1 Byx1 Cyx1 Dyx132017陕西 若一个正比例函数的图象经过 A(3,6),B(m,4)两点,则 m 的值为( )A2 B8 C2 D84若一次函数 y2xb(b 为常数)的图象经过点(1,5),则 b 的值为_5已知 y 是 x 的一次函数,当 x3 时,y1;当 x2 时,y4.求这个一次函数的表达式6如图 1。
6、利用一次函数解决实际问题夯实基础知识点 1 分段函数问题1某种计算器的价格是每个 80 元,若购买不超过 20 个,则按原价付款;若一次购买超过20 个,则超过部分按七折付款设一次购买数量为 x(x20)个,付款金额为 y 元,则 y 与x 之间的表达式为( )Ay0.780(x20)8020By0.7x80(x10)Cy0.780xDy0.780(x10)2图 1 是某复印店复印收费 y(元)与复印面数(8 开纸)x(面)的函数图象,那么从图象中可以看出,复印超过 100 面的部分,每面收费( )图 1A0.4 元 B0.45 元 C0.47 元 D0.5 元3某市出租车计费方式如图 2 所示根据图象信息,下列说法错误的是( )。
7、角平分线的性质【基础练习】知识点 1 角平分线的性质定理12017台州 如图 141,P 是AOB 的平分线 OC 上一点,PDOB,垂足为 D.若PD2,则点 P 到边 OA 的距离是( )图 141A2 B3 C. D432如图 142,OP 为AOB 的平分线,PCOA,PDOB,垂足分别是 C,D,则下列结论错误的是( )图 142APCPD BCPDDOP CCPODPO DOCOD3如图 143,在ABC 中,ABC,ACB 的平分线交于点 O,ODAB 于点 D,OEAC于点 E,则 OD 与 OE 的大小关系是( )图 143AODOE BODOE CODOE D不能确定4如图 144 所示,在ABC 中,A90,BD 是ABC 的角平分线,DEBC,垂足是E,AC11 cm,CD7 cm,则 。
8、勾股定理的逆定理知识点 1 勾股定理的逆定理1在ABC 中,AB6,AC8,BC10,则该三角形为( )A锐角三角形 B直角三角形C钝角三角形 D等腰直角三角形2以下列各组线段为边,能构成直角三角形的是( )A1 cm,2 cm,3 cm B. cm, cm, cm2 6 3C1 cm,2 cm, cm D2 cm,3 cm,4 cm33如图 1226,正方形网格中的ABC 的形状是( )图 1226A直角三角形 B锐角三角形C钝角三角形 D以上选项都不对4在ABC 中,a ,b ,c2 ,则这个三角形中最大的内角度数是2 6 2_5如图 1227,以ABC 的三边为边分别向外作正方形,它们的面积分别是S1,S2,S3,如果 S1S2S3,那么A。
9、勾股定理在实际生活中的应用知识点 勾股定理的实际应用1如果梯子的底端与某高楼竖直墙的距离为 5 米,那么 13 米长的梯子可以达到该楼的高度是( )A12 米 B13 米 C14 米 D15 米2一根旗杆在离地面 4.5 米的地方折断,旗杆顶端落在离旗杆底部 6 米处,则旗杆折断前高为( )A10.5 米 B7.5 米 C12 米 D8 米3如图 1213,某工程队沿 AC 方向开山修路,为加快施工进度,要在小山的另一边同时施工,从 AC 上的一点 B 取ABD120,BD210 m,D30,要正好能使 A,C,E成一条直线,那么 E,D 两点之间的距离等于( )图 1213A105 m B210 m C70 m D105 m3 3 3。
10、一次函数的图象和性质要点感知 1 作一次函数 y=kx+b(k,b 为常数,k0)的图象的方法有:(1)采用列表法作图;(2)利用一次函数 y=kx+b(k,b 为常数,k0)的图象是一条直线的性质,运用两点作图法,找出函数上的_,(最好取(0,_)和(1,_)两点)连接成一条直线即可;(3)通过对直线 y=kx 平移_个单位得到(b0,_平移;b0,_平移).预习练习 1-1 采用两点法作一次函数 y=2x-4 的图象时,我们取点 A(0,_)和 B(1,_)两点,然后过这两点作直线,即可得到 y=2x-4 的图象.1-2 作一次函数 y=2x-4 的图象时,我们还可以采用_法作图,即先作出直线 y=2x 的图。
11、矩形的判定【基础练习】知识点 1 有一个角是直角的平行四边形是矩1如图 14,四边形 ABCD是平行四边形,若利用“有一个角是直角的平行四边形是矩形”判定它是矩形,则需要添加的条件是_(写出一个即可)图 142如图 15,在ABCD 中,DEAB,BFCD,垂足分别为 E,F.求证:(1)ADECBF;(2)四边形 BFDE是矩形图 15知识点 2 有三个角是直角的四边形是矩形3在数学活动课上,老师和同学们要判断一个四边形门框是不是矩形,下面是某合作学习小组的 4名同学拟订的方案,其中正确的是( )A测量对角线是否互相平分 B测量两组对边是否分别相等C测量一组对角是。
12、矩形的性质【基础练习】知识点 1 矩形的定义1在ABCD 中,对角线 AC,BD 交于点 O,增加下列哪个条件,就能判定它是矩形( )AABCADC180 BABBCCAOCO,BODO DABCD知识点 2 矩形的性质2如图 1,在矩形 ABCD 中,对角线 AC,BD 交于点 O,以下说法错误的是( )图 1AABC90 BACBD COAOB DOAAD3. 如图 2 所示,EF 过矩形 ABCD 对角线的交点 O,且分别交 AB,CD 于点 E,F,则阴影部分的面积是矩形 ABCD 面积的( )图 2A. B. C. D.15 14 13 31042017兰州 如图 3,矩形 ABCD 的对角线 AC 与 BD 相交于点 O,ADB30,AB4,则OC 等于( )图 3A5 。
13、菱形的判定【基础练习】知识点 1 四条边都相等的四边形是菱形1如图 13,以点 O为圆心,一定长为半径画弧,与 OM,ON 分别交于点 A,B,再分别以点A,B 为圆心,以 OA长为半径画弧,两弧交于点 C,分别连接 AC,BC,则四边形 OACB一定是( )图 13A平行四边形 B菱形 C矩形 D不能确定2如图 14,已知ABC 中,ABAC,将ABC 沿边 BC翻折,得到的DBC 与原ABC 拼成四边形 ABDC,则能直接判定四边形 ABDC是菱形的依据是( )图 14A一组邻边相等的平行四边形是菱形B四条边都相等的四边形是菱形C对角线互相垂直的平行四边形是菱形D对角线互相垂直平分的四。
14、变量与函数夯实基础知识点 1 常量与变量1一辆汽车以 50 km/h 的速度匀速行驶,则行驶的路程 s(km)与行驶的时间 t(h)满足s50t,其中变量是( )A速度与路程 B速度与时间C路程与时间 D速度、路程和时间均为变量2某超市某种商品的单价为 60 元/件,若买 x 件该商品的总价为 y 元,则 y60x,其中的常量是( )A60 Bx Cy D不确定3在ABC 中,它的底边长是 a,底边上的高是 h,则三角形面积 S ah,当 a 为定值时,12在此式中( )AS,h 是变量, ,a 是常量12BS,h,a 是变量, 是常量12Ca,h 是变量, ,S 是常量12DS 是变量, ,a,h 是常量124以固定。
15、轴对称和平移的坐标表示要点感知 点的上下左右平移公式: 其中 a 为_表示向右移动,a 为_表示向,.xyb左移动;b 为正表示向_移动,b 为负表示向_移动.预习练习 将点 A(-1,2)沿 x 轴向右平移 3 个单位长度,再沿 y 轴向下平移 4 个长度单位后得到点 A的坐标为_.知识点 1 点的综合平移1.将线段 AB 在坐标系中作平行移动,已知 A(-1,2),B(1,1),将线段 AB 平移后,其两个端点的坐标变为A(-2,1),B(0,0),则它平移的情况是( )A.向上平移了 1 个单位长度,向左平移了 1 个单位长度B.向下平移了 1 个单位长度,向左平移了 1 个单位长度C.向。
16、简单平移的坐标表示要点感知 1 在平面直角坐标系中,将点(a,b)向右平移 k 个单位,其像的坐标为_;将点(a,b)向左平移 k 个单位,其像的坐标为_.预习练习 1-1 在平面直角坐标系中,将点 M(1,2)向左平移 2 个长度单位后得到点 N,则点 N 的坐标是( )A.(-1,2) B.(3,2) C.(1,4) D.(1,0)1-2 在平面直角坐标系中,将点 P(-2,3)沿 x 轴方向向右平移 3 个单位得到点 Q,则点 Q 的坐标是( )A.(-2,6) B.(-2,0) C.(-5,3) D.(1,3)要点感知 2 在平面直角坐标系中,将点(a,b)向上平移 k 个单位,其像的坐标为_;将点(a,b)向下平移 k 个单。
17、4.1.2 函数的表示法 一、选择题1一司机驾驶汽车从甲地赶往乙地,他以 80 千米/时的速度匀速行驶 4 小时到达乙地,当他按原路匀速返回时,汽车的速度 v(千米/时)与时间 t(时)之间的函数表达式是( )链 接 听 课 例 1归 纳 总 结Av320t Bv 320tCv20t Dv20t22018长沙小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家图 K281 反映了这个过程中,小明离家的距离 y 与时间 x 的对应关系,根据图象,下列说法正确的是 ( )链 接 听 课 例 2归 纳 总 结图 K281A小明吃早餐用了 25 minB小明读报用了 30 minC食。
18、第4章 一次函数,4.1 函数和它的表示法,4.1.2 函数的表示法,目标突破,总结反思,第4章 一次函数,知识目标,4.1 函数和它的表示法,知识目标,1结合实际,针对具体情况,合理地选择列表法、图象法、公式法来表示各种不同的函数 2通过对函数图象的分析,能有效地根据函数图象找出关键的数据及点的坐标等 3根据实际,在牢固掌握表达式的基础上求函数自变量的取值范围,并能在自变量的取值范围内根据条件求函数的值,目标突破,目标一 掌握函数的表示方法,4.1 函数和它的表示法,例1 教材补充例题 已知等腰三角形的周长为20 cm,设底边长为y cm,腰长。
19、函数的表示法教学目标:1了解函数的三种不同的表示方法;(重点)2在实际情境中,会根据不同的需要,选择恰当的函数的表示方法;(重点)3函数三种表示方法的优点的认识(难点)教学过程:一、情境导入问题:(1)某人上班由于担心迟到所以一开始就跑,等跑累了再走完余下的路程,可以把此人距单位的距离看成是关于出发时间的函数,想一想我们用怎样的方法才能更好的表示这一函数呢?(2)生活中我们经常遇到银行利率、列车时刻、国民生产总值等问题,想一想,这些问题在实际生活中又是如何表示的?二、合作探究探究点:函数的表示方法【类型一】 用。
20、函数的表示法夯实基础知识点 1 函数的表示法1一名老师带领 x 名学生到动物园参观,已知成人票每张 30 元,学生票每张 10 元设门票的总费用为 y 元,则 y 与 x 的关系式为( )Ay10x30 By40x Cy1030x Dy20x2在弹性限度内,弹簧挂上物体后会伸长,测得弹簧的长度 y(cm)与所挂物体的质量 x(kg)之间有如下关系:x(kg) 0 1 2 3 4 y(cm) 10 10.5 11 11.5 12 下列说法不正确的是( )Ay 随 x 的增大而增大B所挂物体质量每增加 1 kg,弹簧长度增加 0.5 cmC所挂物体质量为 7 kg 时,弹簧长度为 13.5 cmD不挂重物时弹簧的长度为 0 cm3小明骑自行车上学,。