1课时作业(五)1.2 第 3 课时 勾股定理的逆定理 一、选择题1下列四组线段中,能组成直角三角形的是( )Aa1,b2,c2 Ba2,b3,c4Ca2,b4,c5 Da3,b4,c52若ABC 的三边 a,b,c 满足(ac)(a 2b 2c 2)0,则ABC 是( )A等腰三角形 B直角三角形
湘教版八年级数学下册第1章直角三角形本章总结提升课件Tag内容描述:
1、1课时作业(五)1.2 第 3 课时 勾股定理的逆定理 一、选择题1下列四组线段中,能组成直角三角形的是( )Aa1,b2,c2 Ba2,b3,c4Ca2,b4,c5 Da3,b4,c52若ABC 的三边 a,b,c 满足(ac)(a 2b 2c 2)0,则ABC 是( )A等腰三角形 B直角三角形 C等腰三角形或直角三角形 D等腰直角三角形3五根小木棒,其长度分别为 7,15,20,24,25,现将它们摆成两个直角三角形,如图 K51,其中正确的是 ( )图 K514如图 K52,在正方形网格中有一个ABC,若小方格的边长均为 1,则ABC 是 ( )图 K52A直角三角形B锐角三角形 C钝角三角形D以上答案都不正确52018长沙。
2、第1章 直角三角形,1.2 直角三角形的性质和判定(),第3课时 勾股定理的逆定理,目标突破,总结反思,第1章 直角三角形,知识目标,第3课时 勾股定理的逆定理,知识目标,1通过勾股定理的逆向思考、验证、归纳,掌握直角三角形的判定方法 2在弄清勾股定理及其逆定理的区别与联系的前提下,综合运用两个定理解决数学问题,目标突破,目标一 会用勾股定理的逆定理判定直角三角形,例1 教材例3 针对训练 已知ABC的三边长a,b,c满足下列条件,且A,B,C所对的边分别为a,b,c,试判断ABC的形状 (1)a25,b20,c15; (2)ap2q2,bp2q2,c2pq(pq0),第3课时 勾。
3、1课时作业(三)1.2 第 1 课时 勾股定理 一、选择题12018滨州在直角三角形中,若勾为 3,股为 4,则弦为 ( )A5 B6C7 D82如图 K31,在边长为 1 个单位的小正方形组成的网格中,点 A,B 都是格点,则线段 AB 的长度为( )图 K31A5 B6 C7 D253如图 K32,在ABC 中,C90,AB 的垂直平分线交 AB 于点 D,交 BC 于点E,连接 AE.若 CE5,AC12,则 BE 的长是( )图 K32A5 B10 C12 D134如图 K33,长方形 OABC 的边 OA 的长为 3,边 AB 的长为 2,OA 在数轴上,以原点 O 为圆心,对角线 OB 的长为半径画弧,交数轴正半轴于一点,则这个点表示的实数是( )。
4、第1章 直角三角形,1.2 直角三角形的性质和判定(),第2课时 勾股定理的应用,目标突破,总结反思,第1章 直角三角形,知识目标,第2课时 勾股定理的应用,知识目标,1通过仿照“动脑筋”,建立直角三角形模型解决实际问题 2通过观察图形,结合转化思想,构造直角三角形应用勾股定理解决问题,目标突破,目标一 利用勾股定理解决实际问题,例1 教材“动脑筋”针对训练 如图124,有两棵树,一棵高10 m,另一棵高4 m,两树相距8 m一只小鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行多少米?,图124,第2课时 勾股定理的应用,解析根据“两点之间线段。
5、课时作业(二)1.1 第 2 课时 含 30 角的直角三角形的性质及应用 一、选择题1如图 K21,一棵大树在一次强台风中从距离地面 5 米处折断倒下,倒下部分与地面成 30角,则这棵大树在折断前的高度是( )图 K21A10 米 B15 米 C25 米 D30 米2如图 K22,已知在ABC 中,ACB90,B30,D 为斜边 AB 的中点,则图中与线段 AC 的长度相等的线段有( )图 K22A0 条 B1 条 C2 条 D3 条3如图 K23,在ABC 中,ACB90,CD 是 AB 边上的高,A30,AB4,则 BD 的值为( )图 K23A3 B2 C1 D.124已知三角形的三个内角度数之比为 123,若这个三角形的最短边长为 ,则它2的。
6、湘教版八年级数学下册第一章 直角三角形单元测试卷(时间:45 分钟 满分:100 分)一、选择题(每小题 3 分,共 24 分)1在下列选项中,以线段 a,b,c 的长为边,能构成直角三角形的是(D)Aa3,b4,c6 Ba5, b6,c7Ca6,b8,c9 Da7, b24,c252如图,BAC 90,ADBC,则图中与ABD 互余的角有(A)A2 个B3 个C4 个D5 个3直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是(C)A形状相同 B周长 相等 C面 积相等 D全等4如图,若要用“HL”证明 RtABCRt ABD,则还需补充条件是(B)ABACBAD BACAD 或 BCBDCACAD 且 BCBD D以上都不正确5如果ABC 。
7、第1章 直角三角形,1.2 直角三角形的性质和判定(),第1课时 勾股定理,目标突破,总结反思,第1章 直角三角形,知识目标,第1课时 勾股定理,知识目标,1通过在方格纸中经历观察、计算、归纳发现勾股定理,会用拼图的方式验证勾股定理 2在理解勾股定理的基础上,会用勾股定理求图形的边长或面积,目标突破,目标一 会验证勾股定理,例1 教材补充例题 如图121是用硬纸板做成的两直角边长分别是a,b,斜边长为c的四个全等的直角三角形和一个边长为c的正方形,请你将它们拼成 一个能证明勾股定理的图形 (1)画出拼成的这个图形的示意图; (2)证明勾股定理,。
8、,第1章 直角三角形,1.1 直角三角形的性质和判定(),第1章 直角三角形,1.1 直角三角形的性质 和判定(),考场对接,例题1 如图1-1-14, 在 RtABC中, ACB=90, CD是 AB边上的高, 如果A=50, 则 DCB的度数为( ). A50 B45 C40 D25,题型一 利用直角三角形两锐角之间的关系求角度,考场对接,A,图1-1-14,锦囊妙计 直角三角形中的经典图形 在直角三角形中, 斜边上的高分直角所得的 两个锐角与原直角三角形的两个锐角之间存在 相等或互余的关系, 这是一个常见的基本图形, 在 解题中应用广泛. 如图1-1-15, B+A=90, A +ACD = 9 0, B =A C D . 同理 , A=BCD.,。
9、,第1章 直角三角形,1.2 直角三角形的性质和判定(),第1章 直角三角形,1.2 直角三角形的性质和判定(),考场对接,例题1 如图1-2-7所 示, 在ABC中, ADBC, 垂 足为D, B=60, C=45. (1)求BAC的度数; (2)若AC=2, 求AD的长.,题型一 利用勾股定理求边长,考场对接,解: (1)BAC=180-60-45=75. (2)ADBC, ADC是直角三角形. C=45, DAC=45, AD=DC. 在RtADC中, AD2 +DC2 =AC2 . AC=2, 2AD2 =4, AD2 =2, AD= .,锦囊妙计 特殊直角三角形三边的比例关系 (1)含30角的直角三角形(如图1-2-8)中, 三 边的比例关系为abc=1 2; (2)含45角的直角三角形 (如图1-2-9)中,。
10、,第1章 直角三角形,1.3 直角三角形全等的判定,第1章 直角三角形,1.3 直角三角形全等的判定,考场对接,例题1 如图1 - 3 - 6, A = B = 90, E是AB上一点, 且 AE=BC, 1=2, 那 么RtADE与 RtBEC全等吗?请说明理由.,题型一 直角三角形全等的判定,考场对接,解:全等. 理由如下: 1=2, DE=EC. A=B=90,AE=BC, RtADERtBEC(HL).,锦囊妙计 直角三角形全等的判定方法 直角三角形全等的判定方法最多, 共有 五种:SSS, SAS, ASA, AAS, HL. 其中前四 种是通法, 后一种是特法, 只适用于直角三 角形.,题型二 利用“HL”定理证明线段相等或角相等,例题2 如图1-。
11、第1章 直角三角形,1.1 直角三角形的性质和判定(),第2课时 含30角的直角三 角形的性质及应用,目标突破,总结反思,第1章 直角三角形,知识目标,第2课时 含30角的直角三角形的性质及应用,知识目标,1通过对含30角的直角三角形的短直角边和斜边长度的测量与数量关系的分析,理解并掌握“在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半”的性质 2通过对直角三角形的短直角边与斜边的长度在数形结合上的分析,推导出“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30”,目标突破,目标一 理解。
12、课时作业(一)1.1 第 1课时 直角三角形的性质和判定 一、选择题1在 RtABC 中,C90,B54,则A 的度数是 ( )链 接 听 课 例 1归 纳 总 结A66 B56 C46 D362在直角三角形中,若斜边和斜边上的中线的长度之和为 9,则斜边上的中线长为( )A3 B4.5 C6 D93具备下列条件的ABC 中,不是直角三角形的是 ( )链 接 听 课 例 2归 纳 总 结AABCBABCCABC123DAB3C4如图 K11,在ABC 中,ABAC8,BC6,AD 平分BAC 交 BC于点 D,E 为 AC的中点,连接 DE,则CDE 的周长为( )图 K11A10 B11 C12 D135如图 K12,ABCADC90,E 是 AC的中点,则( )图 K12A12B。
13、第 1 章质量评估试卷时间:90 分钟 分值:120 分一、选择题(每小题 3 分,共 30 分)1在 RtABC 中,C90,B30 ,斜边 AB 的长为 2 cm,则 AC的长为( )A4 cm B2 cm C1 cm D. cm122下列四组线段中,能构成直角三角形的是( )Aa1,b2,c 3 Ba2,b3,c4Ca 2,b4,c5 Da3,b4, c53如图 1 所示,若要用“HL”证明 RtABCRt ABD,则还需补充条件( )图 1ABACBAD BACAD 或 BCBDCAC AD 且 BCBD D以上都不正确4如图 2,两个较小正方形的面积分别为 9,16,则字母 A 所代表的正方形的面积为( )A5 B10 C15 D25图 25如图 3,在锐角三角形 ABC 中,AD,CE 分。
14、第1章 直角三角形,1.1 直角三角形的性质和判定(),第1课时 直角三角形的性质和判定,目标突破,总结反思,第1章 直角三角形,知识目标,第1课时 直角三角形的性质和判定,知识目标,1根据三角形内角和定理,结合直角三角形的一个内角是直角的特征,理解直角三角形两锐角互余的性质 2通过对三角形中角的认识,归纳出“有两个角互余的三角形是直角三角形”的结论,并运用此结论对三角形的形状进行判定 3通过实际测量,对比斜边上的中线、斜边的长度归纳出“直角三角形斜边上的中线等于斜边的一半”的性质,并能灵活应用此性质,目标突破,目标一 理解。
15、第1章 直角三角形,本章总结提升,知识框架,整合提升,第1章 直角三角形,本章总结提升,知识框架,直角三角形,角的性质,边的性质,边 角性质,直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半,直角三角形两直角边的平方和等于斜边的平方,在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半,在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30,性质,直角三角形,角平分线,判定,性质定理:角的平分线上的点到角的两边的距离相等,逆定理:角的内部到角的两边距离相等的点在角的平分线。