欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

向量与解三角形

义务教育教科书(浙教)九年级数学下册义务教育教科书(浙教)九年级数学下册 第第1章章 解直角三角形解直角三角形 解解 直直 角角 三三 角角 形形 1.1.两锐角两锐角之间的关系之间的关系: : 2.2.三边三边之间的关系之间的关系: : 3.3.边角边角之之 间的关系间的关系 A+B=90A+B=

向量与解三角形Tag内容描述:

1、义务教育教科书(浙教)九年级数学下册义务教育教科书(浙教)九年级数学下册 第第1章章 解直角三角形解直角三角形 解解 直直 角角 三三 角角 形形 1.1.两锐角两锐角之间的关系之间的关系: : 2.2.三边三边之间的关系之间的关系: : 3.3.边角边角之之 间的关系间的关系 A+B=90A+B=900 0 a a2 2+b+b2 2=c=c2 2 C A B 的邻边 的对边 正切函数: 斜边。

2、义务教育教科书(浙教)九年级数学下册义务教育教科书(浙教)九年级数学下册 第第1章章 解直角三角形解直角三角形 在直角三角形中共有五个元素:在直角三角形中共有五个元素: 边边a,b,c, 锐角锐角A,B.这五个元素之间有如下等这五个元素之间有如下等 量关系:量关系: A B C c a b ( (1 1) )三边之间关系三边之间关系: a a2 2 +b +b2 2 =c。

3、义务教育教科书(浙教)九年级数学下册义务教育教科书(浙教)九年级数学下册 第第1章章 解直角三角形解直角三角形 解解 直直 角角 三三 角角 形形 1.两锐角之间的关系两锐角之间的关系 : 2.三边之间的关系三边之间的关系: 3.边角之间边角之间 的关系的关系 A+ +B= =90 a2+ +b2= =c2 C A B sin cos tan cot A A A A A A A A A A =。

4、 平面向量三角函数与解三角形 授课提示:对应学生用书第 99 页 一三角形中的范围最值问题 任何范围问题,其本质都是函数问题,三角形的范围或最值问题也不例外三角形中的 范围或最值问题的解法主要有两种:一是用函数求解,二是利用基本不等式求解由。

5、三角函数与解三角形一、三角函数的图象及其性质已知向量,(1)求的解析式,并求函数的单调增区间;(2)求在上的值域在已知条件下求出,函数的解析式.完成问题:函数的单调增区间.在已知条件下,求在上的值域.【解析】(1)(3分)令,得,故函数的单调增区间为,(6分)(2)因为,所以,从而,(8分)所以,所以在上的值域为(12分)应对策略此类问题通常先通过三角恒等变换化简函数解析式为的形式,再结合正弦函数的性质研究其相关性质(1)已知三角函数解析式求单调区间:求函数的单调区间应遵循简单化原则,将解析式先化简,并注意。

6、 2020年高考文科数学解三角形题型归纳与训练【题型归纳】题型一 利用正、余弦定理解三角形例1 在中,则A B C D【答案】【解析】因为,所以由余弦定理,得,所以,故选A例2 的内角,的对边分别为,若,则 【答案】【解析】,所以,所以,由正弦定理得:解得例3 的内角,的对边分别为,已知,则( ).A B C D【答案】B【解析】由题意得,即,所以.由正弦定理,得,即,得.故选.【易错点】两角和的正弦公式中间的符号易错【思维点拨】已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数。

7、专题 15 三角形的五心与向量一【知识点】1.三角形的重心:三角形各边中线的交点2. 三角形的垂心:三角形各边高线的交点3. 三角形的内心:三角形各个内角平分线的交点4. 三角形的外心:三角形各边垂直平分线的交点5. 三角形的中心:正三角形四心合一为中心二 【学习目标】1理解三角形五心的概念2掌握五心的向量表示3掌握五心的向量表示的轨迹问题三 【题型方法】(一)三角形的内心例 1. O是平面上一定点, ,ABC是平面上不共线的三个点,动点 P满足:,0,)|PA,则 P的轨迹一定通过 ABC的( )A内心 B垂心 C重心 D外心【答案】A【解析】 |B、AC。

8、三角函三角函数与解三角形数与解三角形 三角函数是一种重要的基本初等函数, 它是描述周期现象的一个重要函数模型, 可以加 深对函数的概念和性质的理解和运用其主要内容包括:三角函数的概念、三角变换、三角 函数、解三角形等四部分 在掌握同角三角函数的基本关系式、 诱导公式、 两角和与两角差、 二倍角的正弦、 余弦、 正切公式的基础上,能进行简单三角函数式的化简、求值和恒等式证明;理解并能正确解决 正弦函数、余弦函数、正切函数的图象和性质问题;运用三角公式和正弦定理、余弦定理解 斜三角形重点考查相关的数学思想方法,。

9、三角函三角函数与解三角形数与解三角形 三角函数是一种重要的基本初等函数, 它是描述周期现象的一个重要函数模型, 可以加 深对函数的概念和性质的理解和运用其主要内容包括:三角函数的概念、三角变换、三角 函数、解三角形等四部分 在掌握同角三角函数的基本关系式、 诱导公式、 两角和与两角差、 二倍角的正弦、 余弦、 正切公式的基础上,能进行简单三角函数式的化简、求值和恒等式证明;理解并能正确解决 正弦函数、余弦函数、正切函数的图象和性质问题;运用三角公式和正弦定理、余弦定理解 斜三角形重点考查相关的数学思想方法,。

10、专题 10 解三角形的技巧与解题规律(1)一、本专题要特别小心:1.解三角形时的分类讨论(锐角钝角之分)2. 三角形与三角函数的综合3. 正余弦定理及三角形中的射影定理的应用4.三角形中的中线问题 5.三角形中的角平分性问题6.多个三角形问题7三角形的综合二 【学习目标】掌握三角形形状的判断方法;三角形有关三角函数求值,能证明与三角形内角有关的三角恒等式三【方法总结】三角形中的三角函数主要涉及三角形的边角转化,三角形形状判断,三角形内三角函数求值及三角恒等式证明等以正弦、余弦定理为知识框架,以三角形为主要依托,结合实际。

11、专题 11 解三角形的技巧与解题规律(2)一、本专题要特别小心:1.解三角形时的分类讨论(锐角钝角之分)2. 三角形与三角函数的综合3. 正余弦定理及三角形中的射影定理的应用4.三角形中的中线问题 5.三角形中的角平分性问题6.多个三角形问题7三角形的综合二 【学习目标】掌握三角形形状的判断方法;三角形有关三角函数求值,能证明与三角形内角有关的三角恒等式三【方法总结】三角形中的三角函数主要涉及三角形的边角转化,三角形形状判断,三角形内三角函数求值及三角恒等式证明等以正弦、余弦定理为知识框架,以三角形为主要依托,结合实际。

12、回扣回扣 3 三角函数三角函数、三角恒等变换与解三角形三角恒等变换与解三角形 1.终边相同角的表示 所有与角 终边相同的角,连同角 在内,可构成一个集合 S|k 360 ,kZ,即 任一与角 终边相同的角,都可以表示成角 与整数个周角的和. 2.几种特殊位置的角的集合 (1)终边在 x 轴非负半轴上的角的集合:|k 360 ,kZ. (2)终边在 x 轴非正半轴上的角的集合:|180 k 360 ,kZ. (3)终边在 x 轴上的角的集合:|k 180 ,kZ. (4)终边在 y 轴上的角的集合:|90 k 180 ,kZ. (5)终边在坐标轴上的角的集合:|k 90 ,kZ. (6)终边在 yx 上的角的集合:|45。

13、 解三角形与平面向量 第9讲 9.1解三角形 知识结构图 知识梳理 在中, 分别表示的对边,有以下关系: 角与角关系:; 边与边关系:两边之和大于第三边,两边之差小于第三边; 边与角关系:正弦定理为外接圆半径; 余弦定理,; 面积公式: 经。

14、4.7解三角形的实际应用最新考纲考情考向分析能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.以利用正弦定理、余弦定理测量距离、高度、角度等实际问题为主,常与三角恒等变换、三角函数的性质结合考查,加强数学知识的应用性题型主要为选择题和填空题,中档难度.实际测量中的常见问题求AB图形需要测量的元素解法求竖直高度底部可达ACB,BCa解直角三角形ABatan 底部不可达ACB,ADB,CDa解两个直角三角形AB求水平距离山两侧ACB,ACb,BCa用余弦定理AB河两岸ACB,ABC,CBa用正弦定理AB河对岸ADC,BDC,BCD,。

15、专题 15 三角形的五心与向量一【知识点】1.三角形的重心:三角形各边中线的交点2. 三角形的垂心:三角形各边高线的交点3. 三角形的内心:三角形各个内角平分线的交点4. 三角形的外心:三角形各边垂直平分线的交点5. 三角形的中心:正三角形四心合一为中心二 【学习目标】1理解三角形五心的概念2掌握五心的向量表示3掌握五心的向量表示的轨迹问题三 【题型方法】(一)三角形的内心例 1. O是平面上一定点, ,ABC是平面上不共线的三个点,动点 P满足:,0,)|PA,则 P的轨迹一定通过 ABC的( )A内心 B垂心 C重心 D外心【答案】A【解析】 |B、AC。

16、高考专题突破二高考中的三角函数与解三角形问题题型一三角函数的图象和性质例1 (2016山东)设f(x)2sin(x)sin x(sin xcos x)2.(1)求f(x)的单调递增区间;(2)把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数yg(x)的图象,求g的值解(1)由f(x)2sin(x)sin x(sin xcos x)22sin2x(12sin xcos x)(1cos 2x)sin 2x1sin 2xcos 2x12sin1.由2k2x2k(kZ),得kxk(kZ)所以f(x)的单调递增区间是(kZ).(2)由(1)知f(x)2sin1,把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y2sin1的图。

17、 (一一)三角函数与解三角形三角函数与解三角形 1.(2019 沈阳郊联体模拟)若 sin 3x 2 3,则 cos 32x 等于( ) A.7 9 B. 1 9 C. 1 9 D. 7 9 答案 C 解析 令 3x,则 2x 32, 所以 cos 2x 3 cos(2)cos 2 2sin211 9. 2.(2019 海口调研)下列不等式正确的是( ) A.sin 130 sin 40 log34 B.tan 226 log52 答案 D 解析 sin 40 1sin 80 1 2log52. 3.(2019 钦州模拟)在ABC 中,角 A,B,C 的对边分别是 a,b,c,若 a2,C 4,tan B 4 3,则ABC 的面积等于( ) A.8 7 B. 3 7 C. 4 7 D. 2 7 答案 A 解析 根据题干条件 tan B4 3可得到 sin B4 。

18、考点十 三角恒等变换与解三角形 1 A卷 PART ONE 一、选择题 1(2020 全国卷)若 为第四象限角,则( ) Acos20 Bcos20 Dsin20 解析 当 3时, cos2cos 2 3 0, A错误; 当 6时, cos2 cos 3 0,B 错误;由 在第四象限可得 sin0,cos0,则 sin2 2sincos0,C 错误,D 正确故选 D。

19、专题三专题三 三角函数与解三角形三角函数与解三角形 第二编 讲专题 第第2 2讲讲 三角恒等变换与解三角形三角恒等变换与解三角形 考情研析 三角恒等变换和利用正弦定理、余弦定理解三角形问题 是高考的必考内容.1.三角恒等变换主要考查:两角和与差的正弦、余弦、 正切公式;二倍角公式、半角公式的应用;辅助角公式的应用 2.解 三角形问题主要考查:边和角的计算;三角形形状的判断;面积的计 算;有关参数。

【向量与解三角形】相关PPT文档
1.3解直角三角形(2)ppt课件
1.3解直角三角形(1)ppt课件
1.3解直角三角形(3)ppt课件
2021年高三数学考点复习:三角恒等变换与解三角形
【向量与解三角形】相关DOC文档
2020年高考数学(理)大题专题解析与训练《三角函数与解三角形》
2020年高考文科数学《解三角形》题型归纳与训练
2020高考数学(文)专项复习《三角函数与解三角形》含答案解析
2020高考数学(理)专项复习《三角函数与解三角形》含答案解析
高三数学二轮复习三角函数、三角恒等变换与解三角形
高三文科数学暑期讲义 第9讲 解三角形与平面向量(教师版)
2020版高考数学大一轮复习 第四章 三角函数、解三角形4.7 解三角形的实际应用
高三数学二轮复习三角函数与解三角形
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开