题型三函数图象探究题1.(2019重庆育才中学一诊)已知y是x的函数,x的取值范围为任意实数,下图是x与y的几组对应值:x3210123专题一函数图象问题类型一实际问题的函数图象分析与判断命题角度由实际问题判断函数图象(2019绍兴模拟)张老师出门散步时离家的距离y与时间x之间的函数图象如图所示二次
新函数图象探究问题Tag内容描述:
1、 专题专题 02 动点问题中的函数图象及规律探索问题动点问题中的函数图象及规律探索问题 一、基础知识点综述一、基础知识点综述 动点问题中函数图象的题目的解决方法是:先根据动点运动规律找出所求与动点运动之间的关系,进而获 取相应函数的解析式及函数值变化规律,达到求解的目的. 考查的重点是分段函数解析式的求解. 探索规律问题通常用归纳法,即从简单到复杂,从特殊到一般,这类题目考查的是学生的观察与归纳能力, 注意从特殊到一般的归纳方法. 二二、主要思想方法主要思想方法 分类讨论、数学归纳. 三三、精品例题解析精品例题解。
2、第三单元 函 数一次函数、反比例函数与二次函数图象性质的对比练习一 三种函数的图象问题1. 在同一直角坐标系中,函数 ykxk 与 y (k0)的图象kx大致为( ) 2. 已知二次函数 ya( x1) 2c 的图象如图,则一次函数yax c 的大致图象可能是( ) 第 2 题图3. 在同一平面直角坐标系中,函数 ykx 2k 与 y 的图象可kx能是( ) 4. 二次函数 yax 2bxc(a 0)的图象如图,则反比例函数 y与一次函数 ybx c 在同一坐标系内的图象大致是( ) ax第 4 题图二 三种函数图象的增减性5. 已知函数 yx ,y 和 yx 2x 1.1x(1)y 随 x 的增大而增大的是_;(2)若点 A(1,y 1)。
3、 1.4 三角函数的图象与性质三角函数的图象与性质 14.1 正弦函数正弦函数、余弦函数的图象余弦函数的图象 一、选择题 1以下对正弦函数 ysin x 的图象描述不正确的是( ) A在 x2k,2(k1)(kZ)上的图象形状相同,只是位置不同 B介于直线 y1 与直线 y1 之间 C关于 x 轴对称 D与 y 轴仅有一个交点 考点 正弦函数的图象 题点 正弦函数图象的应用 答案 C 解析 画。
4、 1.4 三角函数的图象与性质三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象正弦函数、余弦函数的图象 1用“五点法”作函数 y2sin x1 的图象时,首先应描出的五点的横坐标可以是 ( ) A0, 2, 3 2 ,2 B0, 4, 2, 3 4 , C0,2,3,4 D0, 6, 3, 2, 2 3 解析 由“五点法”可知选 A 答案 A 2方程 sin x x 10的根的个数。
5、 1.4 三角函数的图象与性质三角函数的图象与性质 14.1 正弦函数正弦函数、余弦函数的图象余弦函数的图象 学习目标 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线 和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余 弦曲线之间的联系 知识点一 正弦函数、余弦函数的概念 实数集与角的集合之间可以建立一一对应关系, 而一个确定的角又。
6、 一、选择题一、选择题 8 (2019淮安)淮安)当矩形面积一定时,下列图象中能表示它的长 y 和宽 x 之间函数关系的是( ) 【答案】【答案】B 【解析】【解析】设矩形的面积为 k(k0) ,则 xy=k, x k y (k0) ,所以符合要求的函数图象是 B. 5(2019安徽)安徽)已知点 A(1,-3)关于 x 轴的对称点 A在反比例函数 y= x k 的图像上,则实数 k 的值为( ) A. 3 B. 3 1 C. 3 D. 3 1 【答案】【答案】A 【解析】【解析】A的坐标为(1,3),故 kxy1 33. 故选 A. 6 (2019孝感)公元前 3 世纪,古希腊科学家阿基米德发现了杠杆平衡.后来人们。
7、三角函数图象与性质【1.以图象为 载体,考查三角函数的最值、单调性、对称性、周期性.2.考查三角函数式的化简、三角函数的图象和性质、角的求值,重点考查分析、处理问题的能力,是高考的必考点【重点、难点剖析】1记六组诱导公式对于“ ,kZ 的三角函数值 ”与“ 角的三角函数值”的关系可按下面口诀记忆,奇变偶k2不变,符号看象限2正弦、余弦、正切函数的图象与性质( 下表中 kZ)函数 ysin x ycos x ytan x图象单调性Error!, Error!为增;Error!Error!为减Error!Error!为增;为减2k, 2kError!Error!为增对称中心 (k,0) (k 2, 0) (k2。
8、三角函数图象与性质1函数 ysin cos 的最小正周期和振幅分别是( )(2x 6) (2x 3)A , B,2 C2,1 D2,2 22已知函数 f(x) cos cos 2x,若要得到一个奇函数的图象,则可以将函数 f(x)3 (2x 2)的 图象( )A向左平移 个单位长度6B 向右平移 个单位长度6C向左平移 个单位长度12D向右平移 个单位长度123已知函数 f(x)2cos x(0)的图象向左平移 个单位长度,所得的部分函(00, 00)图象的相邻两条对称轴之间的距 离为 .为了得到(x 5) 2函数 g(x)cos x 的图象,只要将 yf(x) 的图象( )A向左平移 个单位长度 B向右平移 个单位长度320 320C向左平移 个单。
9、函数图象的画法一、教学目标1、理解平面直角坐标系,以及横轴、纵轴、原点、坐标等的概念.2、认识并能画出平面直角坐标系.3、能在给定直角坐标系中,由点的位置确定点的坐标,由点的坐标确定点的位置.4、掌握平面直角坐标系中点的特点.二、课时安排:1 课时. 三、教学重点:根据点的坐标在直角坐标系中描出点的位置.四、教学难点:探索特殊的点与坐标之间的关系.五、教学过程(一)导入新课 1、在电影院里,你是怎样找到自己的座位的?2、从中你能找到一种表示平面上点的位置的方法吗?如何解决这个问题?下面我们学习本节的知识.(二)讲。
10、函数图象的画法一、教学目标1、学会用列表、描点、连线画函数图象2、学会观察、分析函数图象信息3、提高识图能力、分析函数图象信息能力4、体会数形结合思想,并利用它解决问题,提高解决问题能力二、课时安排:1 课时.三、教学重点:用列表、描点、连线画函数图象四、教学难点:体会数形结合思想,并利用它解决问题,提高解决问题能力五、教学过程(一)导入新课 函 数图象是坐标平面上以自变量的值为横坐标、以对应的函数值 为纵坐标的点组成的曲线,函数象直观地反映了变量之间的对应关系和变化规律那么,怎样画一个函数的图象呢? 下。
11、-12-34-5 -54-3212345 54321Oyx第 3 讲、函数图象的分析与作图(讲义)1. 已知在平面直角坐标系 xOy 中(如图),抛物线 y=-x2+bx+c 经过点 A(2,2),对称轴是直线 x=1,顶点为 B(1)求这条抛物线的表达式和点 B 的坐标;(2)点 M 在对称轴上,且位于顶点上方,设它的纵坐标为 m,连接 AM,用含 m 的代数式表示 AMB 的正切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C 在 x 轴上原抛物线上一点 P 平移后的对应点为点 Q,如果 OP=OQ,求点 Q 的坐标2. 在平面直角坐标系 xOy 中,点 A 的坐标为(0,1),取一点 B(b,0),连接 A。
12、一、选择题1 (北京市朝阳区 2018 一模)如图,在平面直角坐标系 xOy 中,反比例函数 的图象xky经过点 T. 下列各点, , , 中,在该函数图象上的点有)64(,P)83(,Q)12(,M)48(,N(A)4 个(B)3 个(C )2 个(D)1 个答案 B2、 ( 2018 年北京昌平区第一学期期末质量抽测)如图 ,点 B 是反比例函数( )在第一象限内图象上的一点,过点 B 作 BAx 轴于点 A,BCy 轴于点xky0C,矩形 AOCB 的面积为 6,则 k 的值为A3 B6 C-3 D-6答案:B答案:B3、 (2018 北京大兴第一学期期末)已知反比例函数 ,当 x0 时,y 随 x 的增xmy2大而增大,则。
13、4.4 一次函数的应用,第四章 一次函数,第2课时 单个一次函数图象的应用,八年级数学北师版,学习目标,1.掌握单个一次函数图象的应用(重点) 2.了解一次函数与一元一次方程的关系(难点),导入新课,回顾与思考,1.由一次函数的图象可确定k 和 b 的符号; 2.由一次函数的图象可估计函数的变化趋势; 3.可直接观察出:x与y 的对应值; 4.由一次函数的图象与y 轴的交点的坐标可确定b值, 从而确定一次函数的图象的表达式.,从一次函数图象可获得哪些信息?,讲授新课,引例:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.蓄水量V(万m3)。
14、4.4 一次函数的应用,第四章 一次函数,第3课时 两个一次函数图象的应用,八年级数学北师版,学习目标,1.掌握两个一次函数图象的应用(重点) 2.能利用函数图象解决数学问题(难点),导入新课,观察与思考,20,0,40,60,80,100,单位:cm,观察下图,你能发现它们三条函数直线之间的差别吗?,讲授新课,x/吨,y/元,O,1,2,3,4,5,6,1000,4000,5000,2000,3000,6000,引例:l1 反映了某公司产品的销售收入与销售量的关系,根据图意填空:,l1,当销售量为2吨时,销售收入 元,,2000,销售收入,x/吨,y/元,O,1,2,3,4,5,6,1000,4000,5000,2000,3000,6000,l1 反映。
15、一、选择题1(2019温州)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表根据表中数据,可得y关于x的函数表达式为( )近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10A B C D【答案】A【解析】从表格中的近视眼镜的度数y(度)与镜片焦距x(米)的对应数据可以知道,它们满足xy=100,因此,y关于x的函数表达式为故选A.2(2019株洲)如图所示,在直角坐标系xOy中,点A、B、C为反比例函数上不同的三点,连接OA、OB、OC,过点A作ADy轴于点D,过点B、C分别作BE,CFx轴于点E、F,OC与B。
16、高中数学专题06 函数图象【母题来源一】【2019年高考浙江卷】在同一直角坐标系中,函数,(,且)的图象可能是【答案】D【解析】当时,函数的图象过定点且单调递减,则函数的图象过定点且单调递增,函数的图象过定点且单调递减,D选项符合;当时,函数的图象过定点且单调递增,则函数的图象过定点且单调递减,函数的图象过定点且单调递增,各选项均不符合故选D【名师点睛】易出现的错误:一是指数函数、对数函数的图象和性质掌握不熟练,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性【母题来源二】【2018年高考浙江卷】。
17、专题一分析判断函数图象类型一 分析函数性质判断函数图象(2017安徽)已知抛物线yax2bxc与反比例函数y的图象在第一象限有一个公共点,其横坐标为1,则一次函数ybxac的图象可能是()【分析】 由抛物线与反比例函数的图象在第一象限有一个公共点可判断b0,a0,由公共点的横坐标为1可得交点为(1,b),代入抛物线方程可得a,c的关系,然后判断一次函数的图象【自主解答】 【方法点拨】1.抓住题干中的重要信息,本题中注意隐含条件(由抛物线说明a0)和交点位置(由公共点在第一象限说明b0);2.坐标代入法,本题中已知公共点的横坐标,分别代入两个函。
18、二次函数图象综合应用知识互联网题型一:二次函数图象与其解析式系数的关系思路导航图象性质:二次函数图象主要掌握开口方向、对称轴、顶点坐标、与坐标轴的交点、单调性和最值等方面若二次函数解析式为(或)(),则:开口方向,越大,开口越小对称轴(或)顶点坐标,或,单调性当时,在对称轴的左侧,随的增大而减小;在对称轴的右侧,随的增大而增大(如图1);当时,在对称轴的左侧,随的增大而增大;在对称轴的右侧,随的增大而减小(如图2)与坐标轴的交点 与轴的交点:; 与轴的交点:,其中是方程的两根图象与轴的交点个数 当时。
19、专题一函数图象问题类型一 实际问题的函数图象分析与判断命题角度由实际问题判断函数图象(2019绍兴模拟)张老师出门散步时离家的距离y与时间x之间的函数图象如图所示,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( )【分析】根据题意和函数图象可以分析出张老师散步情况为:出发刚开始离家的距离在变大,然后较长一段时间离家的距离不变,从而可以解答本题【自主解答】1(2019孝感)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水。
20、题型三函数图象探究题1. (2019重庆育才中学一诊)已知y是x的函数,x的取值范围为任意实数,下图是x与y的几组对应值:x3210123y3210123小华同学根据研究函数的已有经验探索这个函数的有关性质,并完成下列问题(1)如图,小华在平面直角坐标系中描出了上述几组值对应的点,请你根据描出的点画出函数的图象;(2)请根据你画的函数图象,完成下列问题:当x4时,求y的值;当2012|y|2019时,求x的取值范围第1题图2. (2019重庆南岸区模拟)某课外学习小组根据学习函数的经验,对函数yx24|x|的图象与性质进行了探究请补充完整以下探索过程:第2题图(1)。