欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

习题课数列求和 学案含答案

第2课时直线的斜率、倾斜角的综合应用(习题课) 学习目标1.涉及直线与线段有交点问题求解斜率的范围问题.2.斜率的几何意义的理解及应用. 一、斜率与倾斜角的关系 例1已知坐标平面内两点M(m3,2m5),N(m2,1). (1)当m为何值时,直线MN的倾斜角为锐角? (2)当m为何值时,直线MN的倾

习题课数列求和 学案含答案Tag内容描述:

1、第2课时直线的斜率、倾斜角的综合应用(习题课)学习目标1.涉及直线与线段有交点问题求解斜率的范围问题.2.斜率的几何意义的理解及应用.一、斜率与倾斜角的关系例1已知坐标平面内两点M(m3,2m5),N(m2,1).(1)当m为何值时,直线MN的倾斜角为锐角?(2)当m为何值时,直线MN的倾斜角为钝角?(3)直线MN的倾斜角可能为直角吗?解(1)若倾斜角为锐角,则斜率大于0,即k0,解得m2.即当m2时,直线MN的倾斜角为锐角.(2)若倾斜角为钝角,则斜率小于0,即k0,解得m2.即当m2时,直线MN的倾斜角为钝角.(3)当直线MN垂直于x轴时,直线的倾斜角为直角,此时m3m2。

2、第2课时平面的基本性质应用(习题课)学习目标掌握有关平面的三个公理及三个推论及其应用一、点共线问题例1如图,在正方体ABCDA1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:B,Q,D1三点共线证明如图,连结A1B,CD1,显然B平面A1BCD1,D1平面A1BCD1,BD1平面A1BCD1.同理BD1平面ABC1D1.平面ABC1D1平面A1BCD1BD1.A1C平面ABC1D1Q,Q平面ABC1D1.又A1C平面A1BCD1,Q平面A1BCD1.Q在平面A1BCD1与ABC1D1的交线上,即QBD1,B,Q,D1三点共线反思感悟证明多点共线通常利用公理2,即两相交平面交线的唯一性,通过证明点分别在两个平面内,证明点在。

3、习题课导数的应用学习目标1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与最值的综合应用知识点一函数的单调性与其导数的关系定义在区间(a,b)内的函数yf(x)f(x)的正负f(x)的单调性f(x)0单调递增f(x)0,右侧f(x)0,那么f(x0)是极小值知识点三函数yf(x)在a,b上最大值与最小值的求法1求函数yf(x)在(a,b)内的极值2将函数yf(x)的极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值1函数yxln x在上是减函数()2若函数yaxln x在内单调递增,则a的取值范围为(2,。

4、习题课(1)课时目标1熟练掌握等差数列的概念、通项公式、前 n 项和公式,并能综合运用这些知识解决一些问题2熟练掌握等差数列的性质、等差数列前 n 项和的性质,并能综合运用这些性质解决相关问题要点回顾1若 Sn是数列a n的前 n 项和,则 Sna 1a 2a n, anError!2若数列a n为等差数列,则有:(1)通项公式:a na 1(n1)d;(2)前 n 项和:S nna 1 .nn 1d2 na1 an23等差数列的常用性质(1)若a n为等差数列,且 mnpq(m,n,p,qN *),则 ama na pa q.(2)若 Sn表示等差数列a n的前 n 项和,则Sk,S 2kS k,S 3kS 2k成等差数列一、选择题1在等差数。

5、习题课(2)课时目标1能由简单的递推公式求出数列的通项公式;2掌握数列求和的几种基本方法1等差数列的前 n 项和公式:S n na 1 d.na1 an2 nn 122等比数列前 n 项和公式:(1)当 q1 时,S nna 1;(2)当 q1 时,S n .a11 qn1 q a1 anq1 q3数列a n的前 n 项和 Sna 1a 2a 3a n,则 an Error!.4拆项成差求和经常用到下列拆项公式:(1) ;1nn 1 1n 1n 1(2) ( );12n 12n 1 12 12n 1 12n 1(3) .1n n 1 n 1 n一、选择题1数列a n的前 n 项和为 Sn,若 an ,则 S5 等于( )1nn 1A1 B. C. D.56 16 130答案 B解析 a n ,1nn 1 1n 1n 1S5 (1 )( )( )12 12 。

6、习题课圆的方程的应用学习目标1.体会数形结合思想在求解与圆有关的最值问题中的应用.2.掌握直线与圆的方程的实际应用.3.了解圆系的方程.知识点一与圆有关的最值问题1.与圆上的点(x,y)有关的最值常见的有以下几种类型:(1)形如u形式的最值问题,可转化为过点(x,y)和(a,b)的动直线斜率的最值问题.(2)形如laxby(b0)形式的最值问题,可转化为动直线yx截距的最值问题.(3)形如m(xa)2(yb)2形式的最值问题,可转化为动点(x,y)到定点(a,b)的距离的平方的最值问题.2.与圆的几何性质有关的最值(1)记O为圆心,圆的半径为r,圆外一点A到圆上距离的。

7、习题课简单的线性规划学习目标1.加深对二元一次不等式组及其几何意义的了解.2.能熟练地用平面区域表示二元一次不等式组.3.准确利用线性规划知识求解目标函数的最值.4.会求一些简单的非线性函数的最值.预习导引1.二元一次不等式的几何意义对于任意的二元一次不等式AxByC0(或0时,(1)AxByC0表示直线AxByC0上方的区域;(2)AxByC0表示直线AxByC0下方的区域.2.用图解法解线性规划问题的步骤:(1)确定线性约束条件;(2)确定线性目标函数;(3)画出可行域;(4)利用线性目标函数(直线)求出最优解.3.线性规划在实际问题中的题型主要掌握两种类型:一。

8、习题课(一)求数列的通项公式一、选择题1已知数列an中,a12,an1an2n(nN),则a100的值是()A9 900 B9 902 C9 904 D11 000答案B解析a100(a100a99)(a99a98)(a2a1)a12(999821)2229 902.2已知数列an中,a11,an1(nN),则这个数列的第n项为()A2n1 B2n1 C. D.答案C解析an1,2.为等差数列,公差为2,首项1.1(n1)22n1,an.3在数列an中,a12,an1anln(nN),则an等于()A2ln n B2(n1)ln n C2nln n D1nln n答案A解析由an1anln,得an1anlnln,(。

9、习题课函数及其表示学习目标1.简单函数的值域的基本求法(重、难点);2.会求复合函数的定义域(难点);3.会用熟悉函数的图像作简单函数的图像(重点)1下列图形是函数y|x|(x2,2)的图像的是()解析在y|x|中,yx(0x2)是直线yx上满足0x2的一条线段(包括端点),yx(2x0,所以0.答案A4写出与函数y1(x0)相等的一个函数为_。

10、习题课直线与方程学习目标1.掌握与直线有关的对称问题.2.通过解决最值问题体会数形结合思想与转化化归思想的应用.知识点一对称问题1.点关于直线对称设点P(x0,y0),l:AxByC0(A,B不全为0),若点P关于l的对称点为点Q(x,y),则l是线段PQ的垂直平分线,故PQl且PQ的中点在l上,解方程组即可得点Q的坐标.常用的结论(1)A(a,b)关于x轴的对称点为A(a,b).(2)B(a,b)关于y轴的对称点为B(a,b).(3)C(a,b)关于原点的对称点为C(a,b).(4)D(a,b)关于直线yx的对称点为D(b,a).(5)E(a,b)关于直线yx的对称点为E(b,a).(6)P(a,b)关于直线xm的对称点。

11、习题课习题课 导数的应用导数的应用 学习目标 1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函 数的单调性、极值与最值的综合应用 知识点一 函数的单调性与其导数的关系 定义在区间(a,b)内的函数 yf(x): f(x)的正负 f(x)的单调性 f(x)0 单调增函数 f(x)cos x f(x)成 立,则( ) A. 2f 6 f 4 B. 3f 。

12、习题课数列求和一、选择题1数列2,4,6,的前n项和Sn为()An21 Bn22Cn(n1) Dn(n1)答案C2已知数列an的前n项和为Sn,若an,Sn10,则n等于()A90 B119 C120 D121答案C解析an,Sn(1)()()110,n1121,故n120.3数列,的前n项和为()A. B. C. D.答案B解析由数列通项公式,得前n项和Sn().4已知数列an的通项an2n1,nN*,由bn所确定的数列bn的前n项的和是()An(n2) B.n(n4)C.n(n5) D.n(n7)答案C解析a1a2an(2n4)n22n.bnn2,bn的前n项和Sn.5如果一个数列an满足anan1H (H为常数,nN*),则称数列。

13、习题课(二)数列求和一、选择题1数列an的前n项和为Sn,若an, 则S5等于()A1 B. C. D.答案B解析an.S51.2数列,的前n项和为()A. B. C. D.答案B解析由数列通项公式,得前n项和Sn.3已知数列an的通项an2n1,nN,由bn所确定的数列bn的前n项和是()An(n2) B.n(n4)C.n(n5) D.n(n7)答案C解析a1a2an(2n4)n22n,bnn2,bn的前n项和Sn.4在数列an中,已知Sn159131721(1)n1(4n3),nN,则S15S22S31的值是()A13 B76 C46 D76答案B解析S1547a15285729,S2241144,。

14、习题课数列求和基础过关1数列,的前n项和为()A. B. C. D.答案B解析由数列通项公式,得,得前n项和Sn().2已知数列an的通项an2n1,由bn所确定的数列bn的前n项之和是()An(n2) B.n(n3)C.n(n5) D.n(n7)答案C解析a1a2an(2n4)n22n.bnn2,bn的前n项和Sn.3已知数列an前n项和为Sn159131721(1)n1(4n3),则S15S22S31的值是()A13 B76 C46 D76答案B解析S1547a15285729,S2241144,S31415a3141512161,S15S22S3129446176.故选B.4若lg xlg x2lg x9lg x1。

15、习题课(二)数列求和学习目标1.掌握分组分解求和法的使用情形和解题要点.2.掌握奇偶并项求和法的使用情形和解题要点.3.掌握裂项相消求和法的使用情形和解题要点.4.进一步熟悉错位相减法知识点一分组分解求和法思考求和:123.答案123(123n)1(nN)总结分组分解求和的基本思路:通过分解每一项重新组合,化归为等差数列和等比数列求和知识点二奇偶并项求和法思考求和:122232429921002.答案122232429921002(1222)(3242)(9921002)(12)(12)(34)(34)(99100)(99100)(123499100)5 050.梳理奇偶并项求和的基本思路:有些数列单独看求和困难,但相邻项。

16、习题课数列求和学习目标1.能由简单的递推公式求出数列的通项公式.2.掌握数列求和的几种基本方法预习导引1基本求和公式(1)等差数列的前n项和公式:Snna1d.(2)等比数列前n项和公式:当q1时,Snna1;当q1时,Sn.2an与Sn的关系数列an的前n项和Sna1a2a3an,则an3拆项成差求和经常用到下列拆项公式:(1);(2);(3).题型一分组求和例1求和:Sn222.解当x1时,Sn222(x2x4x2n)2n2n2n;当x1时,Sn4n.综上知,Sn规律方法某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列的求和公式分别求和,从而得出原数列的。

【习题课数列求和 学案含答案】相关DOC文档
第2课时 直线的斜率、倾斜角的综合应用(习题课)学案(含答案)
第2课时 平面的基本性质应用(习题课)学案(含答案)
第3章导数及其应用习题课:导数的应用 学案(含答案)
人教版高中数学必修五《第二章数列》习题课(1)同步练习(含答案)
人教版高中数学必修五《第二章数列》习题课(2)同步练习(含答案)
习题课 圆的方程的应用 学案(含答案)
习题课:简单的线性规划 学案(含答案)
习题课(一)求数列的通项公式 课时对点练(含答案)
习题课 函数及其表示 学案(含答案)
习题课 直线与方程 学案(含答案)
习题课 导数的应用 学案(含答案)
《第2章数列习题课:数列求和》课时对点练(含答案)
习题课(二)数列求和 课时对点练(含答案)
《习题课:数列求和》课时作业(含答案)
习题课(二) 数列求和 学案(含答案)
习题课:数列求和 学案(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开