欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

习题课 直线与方程 课时对点练含答案

第二节第二节 匀变速直线运动的规律匀变速直线运动的规律 第第 1 1 课时课时 匀变速直线运动的速度与时间的关系匀变速直线运动的速度与时间的关系 位移与时间的关系位移与时间的关系 考点一 速度公式 vtv0at 1.多选在运用公式 vtv0,第3课时直线与平面垂直的判定和性质 一、选择题 1.已知P

习题课 直线与方程 课时对点练含答案Tag内容描述:

1、第二节第二节 匀变速直线运动的规律匀变速直线运动的规律 第第 1 1 课时课时 匀变速直线运动的速度与时间的关系匀变速直线运动的速度与时间的关系 位移与时间的关系位移与时间的关系 考点一 速度公式 vtv0at 1.多选在运用公式 vtv0。

2、第3课时直线与平面垂直的判定和性质一、选择题1.已知PA矩形ABCD,下列结论中,不正确的是()A.PBBC B.PDCDC.PDBD D.PABD答案C解析依题意画出几何图形,如图,显然PDBD不正确;BC平面PAB,则PBBC;CD平面PAD,则PDCD;PA平面ABCD,则PABD.2.ABC所在的平面为,直线lAB,lAC,直线mBC,mAC,l,m为两条不重合的直线,则直线l,m的位置关系是()A.平行 B.垂直C.相交 D.以上都有可能答案A解析直线lAB,lAC,且ABACA,l平面,同理直线m平面.由线面垂直的性质定理可得lm.3.已知空间四边形ABCD的四边相等,则它的两对角线AC,BD的关系是()A.垂直且相。

3、第第 2 2 课时课时 匀变速直线运动的速度与位移的关系匀变速直线运动的速度与位移的关系 考点一 速度与位移的关系 vt2v022as 1.2020 哈师大附中高一月考假设某列车在某一路段做匀加速直线运动,速度由 10 ms 增加到 20 。

4、1.2.3直线与平面的位置关系第1课时直线与平面平行的判定一、选择题1.下列条件中能得出直线m与平面平行的是()A.直线m与平面内所有直线平行B.直线m与平面内无数条直线平行C.直线m与平面没有公共点D.直线m与平面内的一条直线平行答案C解析A,本身说法错误;B,当直线m在平面内时,m与不平行;C,能推出m与平行;D,当直线m在平面内时,m与不平行.故选C.2.如果平面外有两点A,B,它们到平面的距离都是a,则直线AB和平面的位置关系一定是()A.平行 B.相交C.平行或相交 D.AB答案C解析结合图形可知选项C正确.3.若直线a平面,直线b平面,则a与b的位。

5、第2课时直线与平面平行的性质一、选择题1.若直线l平面,则过l作一组平面与相交,记所得的交线分别为a,b,c,那么这些交线的位置关系为()A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点D.都平行或交于同一点答案A解析因为直线l平面,所以根据直线与平面平行的性质知la,lb,lc,所以abc,故选A.2.如图所示,在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,EHFG,则EH与BD的位置关系是()A.平行 B.相交 C.异面 D.不确定答案A3.如图,在三棱柱ABCA1B1C1中,AM2MA1,BN2NB1,过MN作一平面交底面三角形ABC的边BC,A。

6、2.2.2直线与圆的位置关系第1课时直线与圆的位置关系一、选择题1.对任意的实数k,直线ykx1与圆x2y22的位置关系一定是()A.相离 B.相切C.相交但直线不过圆心 D.相交且直线过圆心答案C解析易知直线过定点(0,1),且点(0,1)在圆内,所以直线与圆相交但是直线不过圆心(0,0).2.若直线xy10与圆(xa)2y22有公共点,则实数a的取值范围是()A.3,1 B.1,3C.3,1 D.(,31,)答案C解析圆(xa)2y22的圆心C(a,0)到直线xy10的距离为d,则dr|a1|23a1.3.如果圆x2y2DxEyF0与x轴相切于原点,则()A.E0,DF0 B.D0,E0,F0C.D0,EF0 D.F0,DE0答案A解析由题意得,圆心坐。

7、习题课正弦定理和余弦定理一、填空题1在钝角ABC中,a1,b2,则最大边c的取值范围是 考点判断三角形形状题点已知三角形形状求边的取值范围答案(,3)解析由cos Ca2b25.c,又cab3,c3.2在ABC中,sin2Asin2Bsin2Csin Bsin C,则A的取值范围是 考点余弦定理及其变形应用题点用余弦定理求边或角的取值范围答案解析设内角A,B,C所对的边分别为a,b,c,则由已知及正弦定理得a2b2c2bc.由余弦定理得a2b2c22bccos A,则cos A.0A,0A.3设ABC的内角A,B,C所对的边分别为a,b,c,若bcos Cccos Basin A,则ABC的形状为 (填直角、钝角、锐角三角形)考。

8、第2课时平面的基本性质应用(习题课)一、选择题1给出下列说法:梯形的四个顶点共面;三条平行直线共面;有三个公共点的两个平面重合;三条直线两两相交,可以确定3个平面其中正确的序号是()A B C D答案A解析因为梯形有两边平行,所以梯形确定一个平面,所以是正确的;三条平行直线不一定共面,如直三棱柱的三条平行的棱,所以不正确;有三个公共点的两个平面不一定重合,如两个平面相交,三个公共点都在交线上,所以不正确;三条直线两两相交,可以确定的平面个数是1或3,所以不正确2如果直线a平面,直线b平面,Ma,Nb,Ml,Nl,则()Al BlC。

9、2.52.5 直线与圆圆与圆的位置关系直线与圆圆与圆的位置关系 2 25.15.1 直线与圆的位置关系直线与圆的位置关系 第第 1 1 课时课时 直线与圆的位置关系直线与圆的位置关系 课时课时对点对点练练 1直线 3x4y120 与圆x12。

10、第第 2 课时课时 直线与椭圆直线与椭圆 一、选择题 1.若点 P(a,1)在椭圆x 2 2 y2 31 的外部,则 a 的取值范围为( ) A. 2 3 3 ,2 3 3 B. ,2 3 3 2 3 3 , C. 4 3, D. ,4 3 考点 点与椭圆的位置关系 题点 由点与椭圆的位置关系求参数 答案 B 解析 因为点 P 在椭圆x 2 2 y2 31 的外部, 所以a 2 2 1 2 3 1,解得 a2 3 3 或 a0)相交于 A,B 两点,若椭圆的离心率为 2 2 ,焦 距为 2,则线段 AB 的长是( ) A.2 2 3 B.2 C. 2 D.4 2 3 考点 直线与椭圆的位置关系 题点 直线与椭圆相交求弦长 答案 D 解析 由题意得椭圆方程为x 2 2y 21, 联立。

11、习题课导数的应用一、填空题1.函数yexln x的值域为_.考点利用导数研究函数的单调性、极值与最值题点利用导数研究函数的极值与最值答案2,)解析由ye(x0)知函数在上单调递减,在上单调递增,且函数连续、无上界,从而yexln x的值域为2,).2.函数y在定义域内的最大值、最小值分别是_.考点题点答案2,2解析函数的定义域为R.令y0,得x1.当x变化时,y,y随x的变化情况如下表:x(,1)1(1,1)1(1,)y00y极小值极大值当x趋近于负无穷大时,y趋近于0;当x趋近于正无穷大时,y趋近于0.由上表可知,当x1时,y取极小值也是最小值2;当x1时,y取极大值也。

12、习题课导数的应用一、选择题1函数yexln x的值域为()Ae,) B2,)C(e,) D(2,)答案B解析由ye(x0)知函数在上单调递减,在上单调递增,且函数连续、无上界,从而yexln x的值域为2,)2函数y在定义域内的最大值、最小值分别是()A2,2 B1,2 C2,1 D1,2答案A解析函数的定义域为R.令y0,得x1.当x变化时,y,y随x的变化情况如下表:x(,1)1(1,1)1(1,)y00y极小值极大值当x趋近于负无穷大时,y趋近于0;当x趋近于正无穷大时,y趋近于0.由上表可知,当x1时,y取极小值也是最小值2;当x1时,y取极大值也是最大值2.3设f(x)4x3mx2(m3)xn(m,nR)是R上的。

13、第2课时直线的斜率、倾斜角的综合应用(习题课)一、选择题1.若某直线的斜率k(,则该直线的倾斜角的取值范围是()A. B.C. D.答案C解析直线的斜率k(,故当k0,时,倾斜角;当k(,0)时,倾斜角.2.经过两点A(2,1),B(1,m2)的直线l的倾斜角为锐角,则实数m的取值范围是()A.m1C.11或m0,得1m1.3.直线l过原点(0,0),且不过第三象限,那么l的倾斜角的取值范围是()A. B.C.0 D.答案C4.已知点A(1,3),B(2,1).若过点P(2,1)的直线l与线段AB相交,则直线l的斜率k的取值范围是()A.k B.k2C.k或k2 D.2k答案D解析由已知直线l恒过定点P(2,1),。

14、第第 2 2 课时课时 直线与圆的方程的实际应用直线与圆的方程的实际应用 课时课时对点对点练练 1如图,圆弧形拱桥的跨度AB12 米,拱高CD4 米,则拱桥的直径为 A15 米 B13 米 C9 米 D6.5 米 答案 B 解析 如图,设圆。

15、习题课(一)求数列的通项公式一、选择题1已知数列an中,a12,an1an2n(nN),则a100的值是()A9 900 B9 902 C9 904 D11 000答案B解析a100(a100a99)(a99a98)(a2a1)a12(999821)2229 902.2已知数列an中,a11,an1(nN),则这个数列的第n项为()A2n1 B2n1 C. D.答案C解析an1,2.为等差数列,公差为2,首项1.1(n1)22n1,an.3在数列an中,a12,an1anln(nN),则an等于()A2ln n B2(n1)ln n C2nln n D1nln n答案A解析由an1anln,得an1anlnln,(。

16、习题课数列求和一、选择题1数列2,4,6,的前n项和Sn为()An21 Bn22Cn(n1) Dn(n1)答案C2已知数列an的前n项和为Sn,若an,Sn10,则n等于()A90 B119 C120 D121答案C解析an,Sn(1)()()110,n1121,故n120.3数列,的前n项和为()A. B. C. D.答案B解析由数列通项公式,得前n项和Sn().4已知数列an的通项an2n1,nN*,由bn所确定的数列bn的前n项的和是()An(n2) B.n(n4)C.n(n5) D.n(n7)答案C解析a1a2an(2n4)n22n.bnn2,bn的前n项和Sn.5如果一个数列an满足anan1H (H为常数,nN*),则称数列。

17、第2课时直线与圆的位置关系(习题课)一、选择题1.过点(2,1)的直线中,被圆x2y22x4y0截得的弦最长的直线的方程是()A.3xy50 B.3xy70C.3xy10 D.3xy50答案A解析x2y22x4y0的圆心为(1,2),过点(2,1)的直线中,截得弦最长的直线必过点(2,1)和圆心(1,2),直线方程为3xy50,故选A.2.圆x2y24x4y60截直线xy50所得的弦长等于()A. B. C.1 D.5答案A解析圆的方程可化为(x2)2(y2)22,则圆的半径r,圆心(2,2)到直线的距离d,所以直线被圆截得的弦长为22.3.已知直线l:3x4ym0(m0)被圆C:x2y22x2y60截得的弦长是圆心C到直线l的距离的2倍,则m等于()A.6 B.8 。

18、习题课(二)数列求和一、选择题1数列an的前n项和为Sn,若an, 则S5等于()A1 B. C. D.答案B解析an.S51.2数列,的前n项和为()A. B. C. D.答案B解析由数列通项公式,得前n项和Sn.3已知数列an的通项an2n1,nN,由bn所确定的数列bn的前n项和是()An(n2) B.n(n4)C.n(n5) D.n(n7)答案C解析a1a2an(2n4)n22n,bnn2,bn的前n项和Sn.4在数列an中,已知Sn159131721(1)n1(4n3),nN,则S15S22S31的值是()A13 B76 C46 D76答案B解析S1547a15285729,S2241144,。

19、习题课直线与方程一、选择题1.和直线3x4y50关于x轴对称的直线方程为()A.3x4y50 B.3x4y50C.3x4y50 D.3x4y50答案A解析设所求直线上任意一点(x,y),则此点关于x轴对称的点的坐标为(x,y),因为点(x,y)在直线3x4y50上,所以3x4y50即为所求直线.2.已知A(2,4)关于直线xy10对称的点为B,则B满足的直线方程为()A.xy0 B.xy20C.xy50 D.xy0答案D解析设B(a,b),A(2,4)关于直线xy10的对称点为B,解得即B(3,3),分别代入各选项,只有D符合.3.直线2xy30关于直线xy20对称的直线方程是()A.x2y30 B.x2y30C.x2y10 D.x2y10答案A解析因为直线xy20的斜率为1,。

20、习题课直线与方程一、选择题1.和直线3x4y50关于x轴对称的直线方程为()A.3x4y50 B.3x4y50C.3x4y50 D.3x4y50答案A解析设所求直线上任意一点(x,y),则此点关于x轴对称的点的坐标为(x,y),因为点(x,y)在直线3x4y50上,所以3x4y50即为所求直线.2.已知A(2,4)关于直线xy10对称的点为B,则B满足的直线方程为()A.xy0 B.xy20C.xy50 D.xy0答案D解析设B(a,b),A(2,4)关于直线xy10的对称点为B,解得即B(3,3),分别代入各选项,只有D符合.3.直线2xy30关于直线xy20对称的直线方程是()A.x2y30 B.x2y30C.x2y10 D.x2y10答案A解析因为直线xy20的斜率为1,。

【习题课 直线与方程 课时对点练含答案】相关DOC文档
2.2匀变速直线运动的速度与位移的关系(第2课时)基础对点练(含答案)
《第1章 解三角形习题课:正弦定理和余弦定理》课时对点练(含答案)
2.5.1(第1课时)直线与圆的位置关系 课时对点练(含答案)
3.1.2 第2课时 直线与椭圆 课时对点练(含答案)
《第3章导数及其应用习题课:导数的应用》课时对点练(1)含答案
《第3章导数及其应用习题课:导数的应用》课时对点练(2)含答案
2.5.1(第2课时)直线与圆的方程的实际应用 课时对点练(含答案)
习题课(一)求数列的通项公式 课时对点练(含答案)
《第2章数列习题课:数列求和》课时对点练(含答案)
习题课(二)数列求和 课时对点练(含答案)
习题课 圆的方程的应用 课时对点练(含答案)
习题课 直线与方程 课时对点练(含答案)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开