欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

一元二次方程跟与系数

,苏科数学,1.2 一元二次方程的解法(1),二十九中致远 王玉佳,1.2 一元二次方程的解法(1),【问题情境】,如何解方程 x22 呢?,根据平方根的意义,x是2的平方根,即 x .,此一元二次方程的根为 x1 , x2= .,1.2 一元二次方程的解法(1),【概念】,解:x1 ,x2= .,

一元二次方程跟与系数Tag内容描述:

1、,苏科数学,1.2 一元二次方程的解法(1),二十九中致远 王玉佳,1.2 一元二次方程的解法(1),【问题情境】,如何解方程 x22 呢?,根据平方根的意义,x是2的平方根,即 x .,此一元二次方程的根为 x1 , x2= .,1.2 一元二次方程的解法(1),【概念】,解:x1 ,x2= .,像这种解一元二次方程的方法叫做直接开平方法.,解方程x22,1.2 一元二次方程的解法(1),【例题精讲】,例1 解下列方程: (1)x240; (2)4x210 ,解:(1)移项,得 x24,,x是4的平方根,,x2,即 x12,x22,(2)移项,得4x21,,两边都除以4,得,x是 的平方根,,x ,即x1 ,x2 ,x2。

2、,苏科数学,1.2 一元二次方程的解法(5),二十九中致远 王玉佳,1.2 一元二次方程的解法(5),【回顾复习】,用公式法解一元二次方程的一般步骤:,2求出b2 4ac 的值,,1把方程化成一般形式,并写出a、b、c 的值.,4写出方程的解:x1、x2,特别注意:当 b2 4ac0 时没有实数根,3代入求根公式: ,1.2 一元二次方程的解法(5),【例题精讲】,(1) x2x10;(2) ;(3) 2x22x10,例7 解下列方程:,1.2 一元二次方程的解法(5),【总结反思】,当b24ac 0 时,方程没有实数根.,当b24ac 0时,方程有两个不相等的实数根;,当b24ac 0 时,方程有两个相等的实数。

3、 第二章第二章 一元二次方程一元二次方程 2.12.1 一元二次方程一元二次方程 基础导练基础导练 1.某班学生毕业时,每个同学都要给其他同学写一份留言作为纪念,全班学生共写了 1 560 份留言.如果 全班有 x 名学生,根据题意,列出方程为( ) A. (x 1) 2 x =1 560 B. (x 1) 2 x =1 560 C.x(x-1)=1 560 D.x(x+。

4、人教人教A版必修第一册版必修第一册 第二章 一元二次函数方程和不等式 2.32.3 二次函数与一元二次方程不等式二次函数与一元二次方程不等式 课程目标课程目标 1. 通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。 2。

5、21.2.4 一元二次方程的 根与系数的关系,1.熟练掌握一元二次方程根与系数的关系. 2.灵活运用一元二次方程根与系数关系解决实际问题 3.提高学生综合运用基础知识分析解决较为复杂问题的能力,2 -2/3 4/3 -4/3,1/2 -4 -7/2 -2,-3/2 1/3 -7/6 -1/2,4 3/5 23/5 12/5,请同学们观察下表,请同学们猜想:对于任意的一元二次方程ax2+bx+c=0(a0)的两个实数根x1、x2,那么x1+x2, x1x2与系数a,b,c 的关系.,x1+x2= x1.x2=,如果一元二次方程ax2+bx+c=0(a0)的两个实数根是x1,x2 那么x1+x2= ,x1x2=,如果一元二次方程x2+px+q=0的两个根是x1,x2 那么。

6、2.4 2.4 一元二次方程根与系数的关系一元二次方程根与系数的关系 第第2 2章章 一元二次方程一元二次方程 教学目标教学目标 a b xx 21 a c xx 21 了解一元二次方程了解一元二次方程 的两个根分别是的两个根分别是 、 ,那么:,那么: )0(0 2 acbxax 1 x 2 x 这就是一元二次方程根与系数的关系,也叫韦达定理这就是一元二次方程根与系数。

7、,苏科数学,5.4 二次函数与一元二次方程(1),(1)解一元一次方程x10; (2)画一次函数y x 1的图像,并指出函数y x 1的图像与x轴有几个交点; (3)一元一次方程x 1 0与一次函数y x 1有什么联系?,打高尔夫球时,球的飞行路线可以看成是一条抛物线,如果不考虑空气的阻力,某次球的飞行高度 y(单位:米)与飞行距离 x(单位:百米)满足二次函数 :y 5x2 20x,这个球飞行的水平距离最远是多少米?,y(米),x(百米),4,1,2,3,10,y=x2+2x,yx2 2x,图像与x轴有2个交点:,(2,0) (0,0),x22x0,b2 4ac0,,x1 2 , x2 0,二次函数与一元二次方程,。

8、,苏科数学,5.4 二次函数与一元二次方程(2),忆一忆,函数yx22x3的图像如图所示,你能看出方程x22x30的解吗?,函数yx22x1的图像如图所示,你能看出方程x22x10的解吗?,想一想,利用计算器进行探索,x 0.4,缩小它的范围,x 0.41,x 0.414,继续缩小它的范围,算一算,你能用同样的方法求方程的另一个根吗?试试看!,做一做,我们也可以用取中间值逼近的方法去求它的近似根,2x 3,2 x 2.5,2.25 x 2.5,2 x 2.5,继续逼近,2.375 x2.5,2.375 x2.4375,x2.4,继续逼近.,2,3,+,2.5,+,2.25,2.375,2x3,2x2.5,2.25x2.5,2.375x2.5,用线段表示逼近的过程,_,_,_,2.43。

9、,苏科数学,1.1 一元二次方程,29中致远 曹霞,正方形桌面的面积是2m2 ,问:正方形的边长与面积之间有何数量关系?你用什么样的数学式子来描述它们之间的关系?,设正方形桌面的边长是xm,可得:x22,请你说一说,问题2:某校图书馆的藏书在两年内从5万册增加到9.8万册,问:图书馆藏书年平均增长的百分率与藏书量之间有何关系?你用什么样的数学式子来描述它们之间的关系?,设图书馆的藏书平均每年增长的百分率是x,图书馆的藏书一年后为5(1x)万册,两年后为5(1x)2万册,可得:5(1x)2 9.8,请你想一想,问题1:如图,矩形花圃一面靠墙,另外。

10、21 认识一元二次方程认识一元二次方程 第第 1 课时课时 一元二次方程一元二次方程 1了解一元二次方程的概念;(重点) 2掌握一元二次方程的一般形式 ax2bxc0(a,b,c 为常数,a0),能分清二次项、一次 项与常数项以及二次项系数、一次项系数等,会把一元二次方程化成一般形式;(重点) 3能根据具体问题的数量关系,建立方程的模型(难点) 一、情景导入 一个面积为 120m2。

11、26 应用一元二次方程应用一元二次方程 第第 1 课时课时 几何问题及数字问题与一元二次方程几何问题及数字问题与一元二次方程 1掌握列一元二次方程解决几何问题、数学问题,并能根据具体问题的实际意义,检验结果 的合理性;(重点、难点) 2理解将一些实际问题抽象为方程模型的过程,形成良好的思维习惯,学会从数学的角度提 出问题、分析问题,并能运用所学的知识解决问题 一、情景导入 要设计一本书的封面,。

12、2 2. .1.21.2 一元二次方程的解集及其根与系数的关系一元二次方程的解集及其根与系数的关系 学习目标 1.了解一元二次方程的概念, 能用配方法求一元二次方程的解集.2.掌握一元二次 方程的求根公式并能熟练应用.3.理解一元二次方程根与系数的关系 知识点一 一元二次方程的有关概念 形如 ax2bxc0 的方程为一元二次方程,其中 a,b,c 为常数,且 a0. 其中二次项是 ax2,一次项。

13、第22章 二次函数,人教版九年级上册,22.2二次函数与一元二次方程(2),1.已知二次函数y=ax+bx+c的图象如图所示,则 一元二次方程ax+bx+c=0的解是 .,X,Y,0,5,知识回顾,2,2,有两个交点,有两个不相等的实数根,b2-4ac 0,只有一个交点,有两个相等的实数根,b2-4ac = 0,没有交点,没有实数根,b2-4ac 0,b2 4ac= 0,b2 4ac0,c0时,图象与x轴交点情况是( )A 无交点 。

14、第22章 二次函数,人教版九年级上册,22.2二次函数与一元二次方程(1),1.经历用图象法求一元二次方程的近似解的过程,获得用图象法求方程近似解的经验与方法,体会数形结合的重要数学思想。2.会用二次函数的图象解决有关方程与不等式问题。3.掌握和理解二次函数有关代数式符号的确定。,一、学习目标,已知二次函数,求自变量的值,解一元二次方程的根,二次函数与一元二次方程的关系(1),下列二次函数的图象与 x 轴有交点吗? 若有,求出交点坐标.(1) y = 2x2x3(2) y = 4x2 4x +1(3) y = x2 x+ 1,令 y= 0,解一元二次方程的根,(1) y = 2。

15、第21章:一元二次方程,人教版九年级上册,21.1 一元二次方程,1、什么是方程?,2、我们学过什么样的方程呢?,含有未知数的等式叫方程,一元(未知数)一次(未知数的指数)方程: ax+b=0(a0),一、知识回顾,情景引入:问题1,二、导入新课,要设计一座2m高的人体雕像,修雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,雕像的下部应设计为多高?,x,2-x,C,A,B,上部AC ,下部BC有如下关系:即于是得方程:,化简得:,解:,=,BC2=2AC,x2=2(2-x),x2+2x-4=0,学习目标:,1.理解一元二次方程的概念;会把一元二次方程化为一般。

16、 第二章第二章 一元二次方程一元二次方程 2.42.4 一元二次方程根与系数的关系一元二次方程根与系数的关系 基础导练基础导练 1. 若 3 是关于方程 x 2-5x+c=0 的一个根,则这个方程的另一个根是( ) A.-2 B. 2 C.-5 D.5 2. 已知关于 x 的一元二次方程 x 2-bx+c=0 的两根分别为 x 1=1,x2=-2,则 b 与 c 的值分别为(。

17、,1.3 一元二次方程的根与系数的关系,南京第二十九中致远初级中学 张莹莹,苏科数学,观察下表,你能发现下列一元二次方程的根 与系数有什么关系?,一、问题情境,【问题1】,两根的积与 常数项相等,两根的和与 一次项系数 互为相反数,苏科数学,一、问题情境,【问题2】填写下表:,这些方程的两根的和、两根的积与系数有什么关系?,苏科数学,二、数学活动,你能解释刚才的发现吗?,则,一元二次方程 ax2bxc0 (a0),如果b24ac0,它的两个根分别是x1、x2,活动1 用公式验证,苏科数学,二、数学活动,苏科数学,二、数学活动,苏科数学,如果一元二次方。

18、*21.2.4 一元二次方程的根与系数的关系1探索一元二次方程的根与系数的关系2会不解方程利用一元二次方程的根与系数解决问题一、情境导入一般地,对于关于 x 的方程 x2 px q0( p, q 为已知常数, p24 q0),试用求根公式求出它的两个解 x1、 x2,算一算 x1 x2、 x1x2的值,你能得出什么结果?二、合作探究探究点:一元二次方程根与系数的关系【类型一】利用一元二次方程根与系数的关系求关于方程根的代数式的值已知 m、 n 是方程 2x2 x20 的两实数根,则 的值为( )1m 1nA1 B. C D112 12解析:根据根与系数的关系,可以求出 m n 和 mn 的值,。

19、*2.5 一元二次方程的根与系数的关系 一元二次方程的根与系数的关系 1掌握一元二次方程的根与系数的关系;(重点) 2会利用根与系数的关系解决有关的问题(难点) 一、情景导入 解下列方程,将得到的解填入下面的表格中,你发现表格中两个解的和与积和原来的方程有什 么联系? (1)x22x0; (2)x23x40; (3)x25x60. 方程 x1 x2 x1x2 x1 x2 二、合作探。

【一元二次方程跟与系数】相关PPT文档
1.2.1一元二次方程的解法ppt课件
1.2.5一元二次方程的解法ppt课件
2.3二次函数与一元二次方程不等式 课件2
人教版数学九年级上21.2.4一元二次方程的根与系数的关系课件
2.4一元二次方程根与系数的关系ppt课件(湘教版九年级上册)
5.4二次函数与一元二次方程(1)ppt课件
5.4二次函数与一元二次方程(2)ppt课件
1.1一元二次方程ppt课件
22.2二次函数与一元二次方程(2)课件
22.2二次函数与一元二次方程(1)课件
21.1《一元二次方程》课件
21.2.4一元二次方程的根与系数的关系ppt习题课件
1.3一元二次方程的根与系数的关系ppt课件
【一元二次方程跟与系数】相关DOC文档
2.1一元二次方程 课时练习(含答案)
2.1认识一元二次方程 教案
2.6应用一元二次方程 教案
2.1.2 一元二次方程的解集及其根与系数的关系 学案(含答案)
2.4一元二次方程根与系数的关系 课时练习(含答案)
《21.2.4一元二次方程的根与系数的关系》教案
2.5一元二次方程的根与系数的关系 教案
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开