第第 2 课时课时 用空间向量解决立体几何中的垂直问题用空间向量解决立体几何中的垂直问题 一、选择题 1.设直线 l1,l2的方向向量分别为 a(2, 2,1),b(3, 2, m), 若 l1l2, 则 m 等于( ) A.2 B.2 C.6 D.10 考点 向量法求解直线与直线的位置关系 题点
用空间向量解决立体几何中的平行问题ppt课件Tag内容描述:
1、第第 2 课时课时 用空间向量解决立体几何中的垂直问题用空间向量解决立体几何中的垂直问题 一、选择题 1.设直线 l1,l2的方向向量分别为 a(2, 2,1),b(3, 2, m), 若 l1l2, 则 m 等于( ) A.2 B.2 C.6 D.10 考点 向量法求解直线与直线的位置关系 题点 方向向量与线线垂直 答案 D 解析 因为 ab,故 a b0, 即232(2)m0,解得 m10. 2.若平面 , 的法向量分别为 a(1,2,4),b(x,1,2),并且 ,则 x 的值为 ( ) A.10 B.10 C.1 2 D. 1 2 考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直 答案 B 解析 因为 ,所以它们的法向。
2、 4 用向量讨论垂直与平行用向量讨论垂直与平行 第第 1 课时课时 用空间向量解决立体几何中的平行问题用空间向量解决立体几何中的平行问题 一、选择题 1.若直线 l 的方向向量为 a,平面 的法向量为 ,则能使 l 的是( ) A.a(1,0,0),(2,0,0) B.a(1,3,5),(1,0,1) C.a(0,2,1),(1,0,1) D.a(1,1,3),(0,3,1) 考点 直线的方向向量与平面的法向量 题点 求直线的方向向量 答案 D 解析 由 l,故 a,即 a 0,故选 D. 2.已知直线 l1的方向向量 a(2, 3, 5), 直线 l2的方向向量 b(4, x, y), 若两直线 l1l2, 则 x,y 的值分别是。
3、第2课时 用空间向量解决立体几何中的垂直问题,第二章 4 用向量讨论垂直与平行,学习目标,XUEXIMUBIAO,1.能用向量法判断一些简单线线、线面、面面垂直关系. 2.掌握用向量方法证明有关空间线面垂直关系的方法步骤.,NEIRONGSUOYIN,内容索引,自主学习,题型探究,达标检测,1,自主学习,PART ONE,知识点一 向量法判断线线垂直 设直线l的方向向量为a(a1,a2,a3),直线m的方向向量为b(b1,b2,b3),则lm_. 知识点二 向量法判断线面垂直 设直线l的方向向量a(a1,b1,c1),平面的法向量(a2,b2,c2),则la_. 知识点三 向量法判断面面垂直 若平面的法向。
4、 4 用向量讨论垂直与平行用向量讨论垂直与平行 第第 1 课时课时 用空间向量解决立体几何中的平行问题用空间向量解决立体几何中的平行问题 学习目标 1.了解空间点、线、面的向量表示.2.能用向量法证明直线与直线、直线与平面、 平面与平面的平行问题. 知识点一 空间中平行关系的向量表示 设直线 l,m 的方向向量分别为 a,b,平面 , 的法向量分别为 ,v,则 线线平行 lmabakb(kR) 线面平行 laa 0 面面平行 vkv(kR) 知识点二 利用空间向量处理平行问题 利用空间向量解决平行问题时,第一,建立立体图形与空间向量的联系,用空间向量表示问 。
5、第1课时 用空间向量解决立体几何中的平行问题,第二章 4 用向量讨论垂直与平行,学习目标,XUEXIMUBIAO,1.了解空间点、线、面的向量表示. 2.能用向量法证明直线与直线、直线与平面、平面与平面的平行问题.,NEIRONGSUOYIN,内容索引,自主学习,题型探究,达标检测,1,自主学习,PART ONE,知识点一 空间中平行关系的向量表示 设直线l,m的方向向量分别为a,b,平面,的法向量分别为,v,则,ab,a0,kv(kR),知识点二 利用空间向量处理平行问题 利用空间向量解决平行问题时,第一,建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、。