欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

圆锥曲线综合

二圆锥曲线的参数方程,第二讲参数方程,学习目标 1.掌握椭圆的参数方程及应用. 2.了解双曲线、抛物线的参数方程. 3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一椭圆的参数方程,答案是点(rcos ,rsin )绕点O逆时针旋转

圆锥曲线综合Tag内容描述:

1、二圆锥曲线的参数方程,第二讲参数方程,学习目标 1.掌握椭圆的参数方程及应用. 2.了解双曲线、抛物线的参数方程. 3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一椭圆的参数方程,答案是点(rcos ,rsin )绕点O逆时针旋转的旋转角.,思考1圆x2y2r2的参数方程 的参数的几何意义是什么?,(2)。

2、专题 27 快速解决直线与圆锥曲线综合问题解题技巧一 【学习目标】1.掌握圆锥曲线的定义;2掌握焦点三角形的应用和几何意义;3.掌握圆锥曲线方程的求法;4.掌握直线与圆锥曲线的位置关系;5.熟练掌握定点、定值、最值和范围问题。一 【知识点总结】1.椭圆定义:平面内与两个定点 12,F的距离的和等于常数(大于 12,F之间的距离)的点的轨迹叫做椭圆,这两个定点 12,F叫做焦点,两焦点间的距离叫做焦距2椭圆的标准方程(1) ,焦点 ,其中 (2) ,焦点 ,其中3椭圆的几何性质以 为例(1)范围: (2)对称性:对称轴: x轴, y轴;对称中心: (0,)O(3)。

3、专题 28 快速解决直线与圆锥曲线综合问题解题技巧一 【学习目标】1.掌握圆锥曲线的定义;2掌握焦点三角形的应用和几何意义;3.掌握圆锥曲线方程的求法;4.掌握直线与圆锥曲线的位置关系;5.熟练掌握定点、定值、最值和范围问题。一 【知识点总结】1.椭圆定义:平面内与两个定点 12,F的距离的和等于常数(大于 12,F之间的距离) 的点的轨迹叫做椭圆,这两个定点 12,F叫做焦点,两焦点间的距离叫做焦距2椭圆的标准方程(1) ,焦点 ,其中 (2) ,焦点 ,其中3椭圆的几何性质以 为例(1)范围: (2)对称性:对称轴: x轴, y轴;对称中心: (0,)O(3。

4、精准培优专练2020届高三好教育精准培优专练培优点十九 圆锥曲线综合一、圆锥曲线综合例1:已知为坐标原点,分别是椭圆的左、右顶点,点在椭圆上且位于第一象限,点在轴上的投影为,且有(其中),的连线与轴交于点,与的交点恰为线段的中点,则椭圆的离心率为( )ABCD【答案】D【解析】设,则,由题意,得的横坐标为,由,得,直线的方程为,令,则,直线的方程为,直线的方程为,点,恰为线段的中点,整理可得,则例2:设,是双曲线(,)的左,右焦点,是坐标原点过作的一条渐近线的垂线,垂足为,若,则的离心率为( )ABCD【答案】C。

5、精准培优专练2020届高三好教育精准培优专练培优点十八 圆锥曲线综合一、弦长问题例1:过双曲线的右焦点作倾斜角为的弦,求:(1)弦的中点到点的距离;(2)弦的长【答案】(1);(2)【解析】(1)双曲线的右焦点,直线的方程为联立,得设,则,设弦的中点的坐标为,则,所以(2)由(1),知二、定值问题例2:设抛物线的焦点为,抛物线上的点到轴的距离等于(1)求抛物线的方程;(2)已知经过抛物线的焦点的直线与抛物线交于,两点,证明:为定值【答案】(1);(2)证明见解析【解析】(1)由题意可得,抛物线上点到焦点的距离等于。

6、圆锥曲线的综合问题【2019 年高考考纲解读】1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关系为载体,以参数处理为核心,考查范围、最值问题,定点、定值问题,探索性问题.2.试题解答往往要综合应用函数与方程、数形结合、分类讨论等多种思想方法,对计算能力也有较高要求,难度较大【重点、难点剖析】一、 范围、最值问题圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解二、定点、定值问题1由直线方程确定定点,若得到了直线方程的点斜式: y y0 k(x x0),则直线必过。

7、考点十六考点十六 直线与圆锥曲线综合问题直线与圆锥曲线综合问题 一、选择题 1已知双曲线x 2 a2 y2 b21(a0,b0)的离心率为 3,右焦点到一条渐近线的距离为 2,则 此双曲线的焦距等于( ) A. 3 B2 3 C3 D6 答案 B 解析 由题意, 得焦点 F(c,0)到渐近线 bxay0 的距离为 d |bc0| a2b2 bc c b 2, 又c a 3,c2a2b2,。

8、2022年中考数学复习专题11:圆锥曲线的综合问题一定点问题定点问题:圆锥曲线中的定点问题往往与圆锥曲线中的常数有关,如椭圆的长短轴,双曲线的虚实轴,抛物线的焦参数等解答这类题要大胆设参,运算推理,到最后参数必清 1.例题例1已知抛物线经过。

9、圆锥曲线编稿:张林娟 审稿:孙永钊【学习目标】1.初步掌握平面截圆锥面所得交线的几何特征,掌握椭圆、双曲线、抛物线的几何性质及圆锥曲线的统一定义了解圆锥曲线的应用价值.2.逐步探索平面与球面、平面与圆柱面、平面与圆锥面相截所得交线的形状和几何特征,经历由一类曲线提出其共同性质,再根据这些性质确定它是什么曲线的过程,感悟、体会用综合几何方法探索几何图形性质的思想方法.3.对平面截圆锥面所得曲线的研究是一个由具体到形象、由特殊到一般的过程;对圆锥曲线共性的研究运用了运动、变化的观点.因此,本章的学习有助于培养。

10、综合突破五综合突破五 圆锥曲线的综合问题圆锥曲线的综合问题 第第1课时课时 圆锥曲线中的最值或范围问题圆锥曲线中的最值或范围问题 已知椭圆x 2 2 y21 上两个不同的点 A,B 关于直线 ymx1 2对称 1求实数 m 的取值范围; 2。

11、精准培优专练2020届高三好教育精准培优专练培优点十八 圆锥曲线综合一、弦长问题例1:过双曲线的右焦点作倾斜角为的弦,求:(1)弦的中点到点的距离;(2)弦的长二、定值问题例2:设抛物线的焦点为,抛物线上的点到轴的距离等于(1)求抛物线的方程;(2)已知经过抛物线的焦点的直线与抛物线交于,两点,证明:为定值三、最值问题例3:已知两定点,为坐标原点,动点满足:直线,的斜率之积为(1)求动点的轨迹的方程;(2)设过点的直线与(1)中曲线交于,两点,求的面积的最大值四、存在性问题例4:已知中心在坐标原点的椭圆经过点,。

12、 9.9 圆锥曲线的综合问题圆锥曲线的综合问题 最新考纲 考情考向分析 1.掌握解决直线与椭圆、 抛物线的位置关系的 思想方法 2.了解圆锥曲线的简单应用 3.理解数形结合的思想. 以考查直线与椭圆、双曲线、抛物线的位置 关系为背景,主要涉及弦长、中点、面积、 对称、存在性问题题型主要以解答题形式 出现,属于中高档题. 1直线与圆锥曲线的位置关系的判断 将直线方程与圆锥曲线方程联立,消去一个变量得到关于 x(或 y)的一元方程:ax2bxc 0(或 ay2byc0) (1)若 a0,可考虑一元二次方程的判别式 ,有 0直线与圆锥曲线相交; 0直线与圆锥曲线。

13、9.5 锥曲线综合问题锥曲线综合问题 典例精析典例精析 题型一 求轨迹方程 例 1已知抛物线的方程为 x22y,F 是抛物线的焦点,过点 F 的直线 l 与抛物线交于 AB 两点,分别过点 AB 作抛物线的两条切线 l1 和 l2,记 l1。

14、2.1圆锥曲线学习目标1.掌握圆锥曲线的类型及其定义、几何图形和标准方程,会求简单圆锥曲线的方程.2.通过对圆锥曲线性质的研究,感受数形结合的基本思想和理解代数方法研究几何性质的优越性知识点一椭圆的定义思考如果动点P到两定点A,B的距离之和为PAPB2a(a0且a为常数),点P的轨迹一定是椭圆吗?答案不一定当2aAB时,P点的轨迹是椭圆;当2aAB时,P点的轨迹是线段AB;当2aAB时,P点无轨迹梳理平面内与两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆两个定点F1,F2称为椭圆的焦点,两焦点之间的距离称为椭圆的焦距知识点二。

15、 例 1:已知椭圆 22 22 :1(0) xy Cab ab 的离心率为 1 2 ,且过点(2,3)P (1)求椭圆C的方程; (2)过点P作两条直线 1 l, 2 l与椭圆C分别交于M,N(M,N与P不重合) 两点, 若 1 l, 2 l的斜率之和为 1, 求证:直线MN过定点 例 2:在平面直角坐标系xOy中,F是抛物线 2 :2(0)C xpy p的焦点,M是抛物线C上位于第一象。

16、 例 1:已知椭圆 22 22 :1(0) xy Cab ab 的离心率为 3 2 ,点A,B, 2 F分别为椭圆的右顶点,上顶点和右焦点, 且 2 3 1 2 ABF S (1)求椭圆C的方程; (2)E,F是椭圆上的两个动点,若直线AE与直线AF的斜率之和为1,证明,直线EF恒过定点 例 2:已知双曲线 2 2 :1(0) y C xb b 的左、右焦点分别为 1 F, 2 F,。

17、高二期末复习专题之圆锥曲线小题综合复习知识与技巧典型题一:中点弦和定义AB是椭圆的不平行于对称轴的弦,M为AB的中点,则.AB是双曲线的不平行于对称轴的弦,M为AB的中点,则.1.已知椭圆C:的长轴长为4,若点P是椭圆C上任意一点,过原点的。

18、42 圆锥曲线的共同特征圆锥曲线的共同特征 43 直线与圆锥曲线的交点直线与圆锥曲线的交点 一、选择题 1过点(2,4)作直线与抛物线 y28x 只有一个公共点,这样的直线有( ) A1 条 B2 条 C3 条 D4 条 考点 直线与圆锥曲线的位置关系问题 题点 直线与圆锥曲线的公共点个数问题 答案 B 解析 点(2,4)在抛物线 y28x 上,从而这样的直线有两条,一条为切线,一条与 x 轴平行 2方程 x12y12|xy2|表示的曲线是( ) A椭圆 B双曲线 C抛物线 D线段 考点 圆锥曲线定义的应用 题点 用定义判断曲线类型或求方程 答案 B 解析 因为 x12y12|xy2|, 所以 x12y12 |x。

19、考点十六 直线与圆锥曲线综合问题 1 A卷 PART ONE 解析 由题意, 得焦点 F(c,0)到渐近线 bxay0 的距离为 d |bc0| a2b2 bc c b 2,又 c a 3,c 2a2b2,解得 c 3,所以该双曲线的焦距为 2c2 3,故选 B. 一、选择题 1已知双曲线 x2 a2 y2 b21(a0,b0)的离心率为 3,右焦点到一条渐近 线的距离为 2,则此双曲线的焦。

20、圆锥曲线的综合问题1已知椭圆 1(a b0)的离心率 e ,左、右焦点分别为 F1,F 2,且 F2 与抛物线x2a2 y2b2 33y24x 的焦点重合(1)求椭圆的标准方程;(2)若过 F1 的直线交椭圆于 B,D 两点,过 F2 的直线交椭圆于 A,C 两点,且 ACBD,求|AC|BD|的最小值2已知椭圆 C: 1(ab0)的左、右焦点分别为 F1,F 2,离心率为 ,点 P 在椭圆x2a2 y2b2 13C 上,且PF 1F2 的面积的最大值为 2 .来源:2(1)求椭圆 C 的方程;源:Z,xx,k.Com(2)已知直线 l:ykx2( k0)与椭圆 C 交于不同的两点 M,N,若在 x 轴上存在点 G,使得|GM|GN|,求点 G 的横坐标的取值范 。

【圆锥曲线综合】相关PPT文档
2.2圆锥曲线的参数方程ppt课件
2022高考数学一轮总复习课件:综合突破五 圆锥曲线的综合问题
2021年高三数学考点复习:直线与圆锥曲线综合问题
【圆锥曲线综合】相关DOC文档
高考文科数学命题热点名师解密专题:快速解决直线与圆锥曲线综合问题
高考数学命题热点名师解密专题:快速解决直线与圆锥曲线综合问题(理)
2020届高三精准培优专练十九 圆锥曲线综合(理) 教师版
2020届高三精准培优专练十八 圆锥曲线综合(文) 教师版
2019年高考数学教师版(含解析)之圆锥曲线的综合问题
2021年高考数学二轮复习考点-直线与圆锥曲线综合问题
2022年中考数学复习专题11:圆锥曲线综合问题(含答案解析)
高考总复习:知识讲解_圆锥曲线_不分层
2020届高三精准培优专练十八 圆锥曲线综合(文) 学生版
高考数学一轮复习学案:9.9 圆锥曲线的综合问题(含答案)
高考数学一轮复习总教案:9.5圆锥曲线综合问题
2.1圆锥曲线 学案(含答案)
2021届高三数学精准培优专练圆锥曲线综合(文) 含答案
2021届高三数学精准培优专练 圆锥曲线综合(理) 含答案
高二期末复习专题:圆锥曲线小题综合复习(含答案)
3.4.2圆锥曲线的共同特征-3.4.3直线与圆锥曲线的交点 课时对点练(含答案)
2019年高考数学(含解析)之圆锥曲线的综合问题
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开