利用圆柱的体积求不规则物体的体积情境导入探究新知课堂小结课后作业圆柱与圆锥课堂练习31“转化方法”情境导入返回一个内直径是8cm的瓶子里,水的高度是7cm,把第6课时解决问题1.滨海化工厂有一个圆柱形油罐底面半径是4米高是20米。(1)给这个油罐的表面刷油漆需刷油漆的面积是多少平方米(2)如果每立方
圆锥体积的应用能力检测卷Tag内容描述:
1、,第 5 课时 体 积 与 体 积 单 位(2),第 三 单元 长方体 正方体,学习目标,在观察与思考中理解容积的含义。,知道常用的容积单位及相邻两个单位间的进率。,能根据容积单位间的进率进行容积单位的互化。,2,情景导入,阿普顿是美国普林斯顿大学数学系的毕业生,有一次,爱迪生让他测算一只梨形灯泡的容积。于是,他拿起灯泡,然后加以计算。阿普顿在好几张白纸上写满了密密麻麻的数据和算式,也没算出来。爱迪生等了很长时间,也不见阿普顿报告结果,只见爱迪生取来一大杯水,轻轻地往灯泡里倒满了水,然后把水倒进量筒,几秒钟就量出了水的体。
2、3.7 体积和体积单位1. ( )叫做物体的体积。常用的体积单位有( )、( )和( )。2.棱长是1米的正方体,它的底面积是( ),体积是( )。棱长是1分米的正方体,它的底面积是( ),体积是( )。棱长是1厘米的正方体,它的底面积是( ),体积是( )。3.一个花圃的面积约是10( ); 一瓶药水重60( );一个仓库的体积是125( ); 一间教室的面积约是48( );一堆沙的体积是1.98( ); 一瓶墨水体积是约60( );微波炉的体积约是45( )。答案提示1. 物体所占空间的大小, 立方米、立方分米、立方厘米2.1平方米,1立方米 ,1平方分米,1立方分米,1平方厘米,1立方厘米3.。
3、,体积和体积单位,情境导入,探究新知,课堂小结,课后作业,长方体和正方体,课堂练习,3,1,情境导入,返回,乌鸦是怎样喝到水的?为什么?,取两个同样大小的杯子并都装一定的水(不装满),往一个杯子中放入几块鹅卵石,另一个杯子不放,如下图:,水面上升了,探究新知,返回,取两个同样大小的杯子并都装满水,往其中一个杯子中放入几块鹅卵石,另一个杯子不放,如下图:,石子放得越多,溢出的水也就越多,返回,当杯中放入石子后,石子占据了一定的空间,把水向上排挤,水面上升,石子放得越多,水面上升得越高。当杯中水满后放入石子,石子还是占有空间,所以水会溢出。。
4、,体积与体积单位,情境导入,探究新知,课堂小结,课后作业,长方体和正方体,课堂练习,7,情境导入,体积:505020,体积:403020,什么是体积?,探究新知,什么是体积?,实验一:,水面上升,2.将石头浸入玻璃杯的水中,观察放入石头后水位有的变化情况。,1.准备盛有半杯水的玻璃杯和一块石头。,石块占了水槽的空间,实验二:,1.准备2个同样的杯子。第一个杯子装满沙子,第二个杯子空。
5、体积和体积单位,乌鸦是怎样喝到水的?为什么?会出现什么情况?为什么?1.取两个同样大小的玻璃杯; 2.往一个杯子里倒满水; 3.取一块鹅卵石放入另一个杯子; 4.把第一个杯子里的水倒进第二个杯子里。,下面的洗衣机、影碟机和手机,哪个所占的空间大?,物体所占空间的大小叫做物体的体积。,上面三个物体,哪个体积最大?哪个体积最小? 洗衣机的体积最大,手机的体积最小。,也要用统一的体积单位来测量吧?,怎样比较下面两个长方体体积的大小呢?,计量体积要用体积单位,常用的体积单位有立方厘米、立方分米和立方米,可以分别写成cm、dm。
6、六年级数学下册 3.5 VOLUME OF CONE 汇报人:汇报时间:20XX 圆锥的体积 某某实验小学 01 温故知新 这堆沙子是什么形状的?想一想:怎么才能知道这堆沙子的体积? 现在给出一些数,你的办法还合适吗? 5m 2m 思考:其他立体图形的体积都可以用公式 计算,圆锥也可以吗? 02 新知探究 说一说:哪个体积大 ? 大大 你发现了什么? 02 新知探究 大大 圆锥的体积与底面积、高有。
7、,第 一 单元 圆柱与圆锥,第 4 课时 圆锥的体积,圆柱的体积等于和它等底等高的圆锥的体积的3倍。,如果小麦堆的底面半径为2m,高为1.5m。小麦堆的体积是多少立方米?,6.28(m3),答:小麦堆的体积是6.28m3。,1.下图中,圆锥的体积与哪个圆柱的体积相等?说说你是怎么想的。,2.计算下面各圆锥的体积。,3.如图,测量中经常使用铅锤。这个铅锤的体积是多少立方厘米?,4,4.有一座圆锥形帐篷,底面直径约5m,高约3.6m。 它的占地面积约是多少平方米? 它内部的空间约是多少立方米?,3.14(52)219.625(m2),答:它的占地面积约是19.625平方米,答。
8、圆柱与圆锥圆柱与圆锥 第六课时第六课时 圆锥的体积圆锥的体积 小学数学小学数学 复习旧知复习旧知 我们已经学会计算圆柱的体积,请你回忆一 下如何计算圆柱的体积? 情景导入情景导入 我们已经会计算圆柱的体积,如何计算圆锥的体 积呢? 探究新知探究新知 圆锥的体积和圆柱的体积有没有关系呢 ? 圆柱的底面是圆,圆锥的 底面也是圆 可以通过试验,探究 一下圆锥和圆柱体积 之间的关系 探究新知探究新知 (1。
9、4 圆锥的体积,3.培养自主探索与合作交流的精神,渗透转化的数学思想和方法。,1.通过实验,探索并掌握圆锥体积的计算方法。,2.经历观察、猜想、实验等过程,发展动手操作能力、归纳推理能力。,学习目标,1.怎样计算圆柱的体积?,V=Sh,2.一个圆柱的底面积是60平方分米,高 是15分米,它的体积是多少立方分米?,复习旧知,情境导入,它占了多大的空间呢?,情境导入,实验要求:把圆锥装满水倒进圆柱中,观察要 几次才能倒满,并做好实验记录。,实验准备:1套等底等高的圆锥、圆柱体容器, 水,记录表。,探索新知,等底等高的:,探索新知,等底等高的:。
10、,圆锥的体积,情境导入,探究新知,课堂小结,课后作业,圆柱与圆锥,课堂练习,1,1,情境导入,返回,返回,返回,返回,返回,返回,返回,返回,返回,探究新知,返回,返回,返回,返回,返回,返回,返回,返回,返回,返回,返回,圆柱体积底面积高,返回,返回,如果小麦堆的底面半径为2m,高为1.5m。小麦堆的体积是多少立方米?,6.28(m3),答:小麦堆的体积是6.28m3。,返回,1.一个圆柱的体积是315立方厘米,与它等底等高的圆锥的体积是多少立方厘米?,3153=105(cm3),答:圆锥的体积是105cm3。,课堂练习,返回,2.计算下面各圆锥的体积。,10.8(m3),200.96(cm3),。
11、,圆锥的体积,情境导入,探究新知,课堂小结,课后作业,圆柱与圆锥,课堂练习,3,1,圆锥有什么特点?,情境导入,返回,圆锥的体积与圆柱的体积有没有关系呢?,等底、等高的圆柱和圆锥的体积之间的关系吗?,圆柱的底面是圆,圆锥的底面也是圆。,探究新知,返回,圆锥的体积与圆柱有怎样的关系呢?,圆柱和圆锥等底等高。,返回,4,1次,返回,5,2次,返回,6,正好倒满,3次,3个圆锥的体积=1个圆柱体积,返回,7,底面积高,返回,工地上有一堆沙子,近似于一个圆锥(如下图)。这堆沙子的体积大约是多少?如果每立方米沙子重1.5t,这堆沙子大约重多少吨?(得数保。
12、2.7圆锥的体积1. 一个圆锥的底面直径是8分米,高是6分米,体积是( )立方分米。2下面物体、的底面积相等,、的底面积是的2倍,物体的高是其它物体的2倍。和物体的体积相等的是物体( ),物体的体积是的( )倍。广场学校北 3一个圆锥形麦堆,底面半径2米,高12米。如果每立方米的小麦重750千克,这堆小麦重多少吨?(得数保留整数)答案1. 301.442 1.53223.141.2750=3768(千克)=3.768(吨)4(吨)答:这堆小麦重4吨。。
13、7.2棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积学习目标1.掌握柱体、锥体、台体的体积计算公式,会利用它们求有关几何体的体积.2.掌握求几何体体积的基本技巧.知识点一柱、锥、台体的体积公式几何体体积公式柱体圆柱、棱柱V柱体ShS柱体底面积,h柱体的高锥体圆锥、棱锥V锥体ShS锥体底面积,h锥体的高台体圆台、棱台V台体(S上S下)hS上、S下台体的上、下底面面积,h高知识点二柱体、锥体、台体的体积公式之间的关系VShV(SS)hVSh.1.锥体的体积等于底面面积与高之积.()2.台体的体积可转化为两个锥体的体积之差.()题型一多面体的体积例1如图是一。
14、7.2棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积一、选择题1.如图,ABCABC是体积为1的棱柱,则四棱锥CAABB的体积是()A. B.C. D.答案C解析VCABCVABCABC,VCAABBVABCABC.2.已知一个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得几何体的体积是()A.4 cm3 B.6 cm3 C.8 cm3 D.12 cm3答案A解析由三视图可知该几何体是高为2 cm的四棱锥,其底面为直角梯形,且上底为2 cm,下底为4 cm,高为2 cm,所以体积为V(24)224(cm3).3.已知圆锥的母线长为8,底面圆的周长为6,则它的体积是()A.9 B.9 C.3 D.3答案C解析设圆锥的底面圆的半径为r,。
15、2.4 圆锥的体积,1,学习目标,1.组织学生参与实验,从而推导出圆锥体积的计算公式。 2.会运用圆锥的体积计算公式计算圆锥的体积。 3.培养学生观察、比较、分析、综合的能力,以及初步的空间观念。 4.以小组形式参与学习过程,培养学生的合作意识。 5.渗透转化的数学思想。,2,复习导入,1、同桌说一说圆柱体积的计算公式。 (1)已知 s、h,求 v。 (2)已知 r、h,求 v。 (3)已知 d、h,求 v。 (4)已知 C、h,求 v。,3,2、说一说圆锥有哪些特征?,(1)顶部:尖顶; (2)底面:是一个圆; (3)侧面:是一个曲面(展开是一个扇形); (4)底面圆。
16、,圆锥的体积,情境导入,探究新知,课堂小结,课后作业,圆柱和圆锥,课堂练习,2,1,计算圆柱的体积。(单位:分米),823.1410=2009.6(立方分米),圆锥的体积可以这样计算吗?,情境导入,返回,可以用什么办法来检验你的估计?,下面的圆柱和圆锥底面积相等,高也相等。,你能估计出这个圆锥的体积是圆柱的几分之几吗?,探究新知,例 5,返回,准备等底等高的圆柱形和圆锥形容器各一个。,等底,等高,返回,准备等底等高的圆柱形和圆锥形容器各一个。,在圆锥形容器里装满沙子,再倒入空的圆柱形容器里,看看几次正好倒满。,返回,在圆锥形容器里装满沙子,。
17、第9课时 圆锥的体积1.填空题。(1)一个圆柱和一个圆锥等底等高,如果圆柱的体积是12立方分米,那么圆锥的体积是()立方分米;如果圆锥的体积是12立方分米,那么圆柱的体积是()立方分米。(2)一个底面积是12平方厘米、高是9厘米的圆柱的体积是()立方厘米,和它等底等高的圆锥的体积是()立方厘米。2.计算下列圆锥的体积。3.有一个圆锥形大豆堆,它的底面周长是9.42米,高是1.8米,1立方米大豆约重825千克,这堆大豆大约重多少千克?答案:1.(1)4 36 (2)108 362. 12.56立方厘米314立方分米3. 9.423.142=1.5(米)3. 141.521.813825=3497.175(千克)。
18、第6课时 解决问题1.滨海化工厂有一个圆柱形油罐,底面半径是4米,高是20米。(1)给这个油罐的表面刷油漆,需刷油漆的面积是多少平方米?(2)如果每立方米汽油重0.7吨,这个油罐最多能装汽油多少吨?(油罐厚度忽略不计)26.一个圆柱形粮囤的底面积是2平方米,高是80厘米。每立方米稻谷约重600千克。这个粮囤能存放多少千克的稻谷?3.一个圆柱形水槽的底面半径是8厘米,水槽中完全浸没一个铁块,当铁块取出时,水面下降了5厘米。这个铁块的体积是多少立方厘米?答案:1.(1)3.14422+3.144220=602.88(平方米)(2)3.1442200.7=703.36(吨)2.80厘米=0.8米20.8600=9。
19、,利用圆柱的体积求不规则 物体的体积,情境导入,探究新知,课堂小结,课后作业,圆柱与圆锥,课堂练习,3,1,“转化方法”,情境导入,返回,一个内直径是8cm的瓶子里,水的高度是7cm,把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是18cm。这个瓶子的容积是多少?,探究新知,返回,一个内直径是8cm的瓶子里,水的高度是7cm,把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是18cm。这个瓶子的容积是多少?,正放,倒置,前,后,返回,一个内直径是8cm的瓶子里,水的高度是7cm,把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是18cm。这个瓶子的容积是多少?,18cm。