8.5 直线、平面垂直的判定与性质最新考纲 考情考向分析1.理解空间线面垂直、面面垂直的判定定理和性质定理.2.理解直线与平面所成角的概念,了解二面角及其平面角的概念.直线、平面垂直的判定及其性质是高考中的重点考查内容,涉及线线垂直、线面垂直、面面垂直的判定及其应用等内容.题型主要以解答题的形式出现
浙江省20届高考数学一轮 第3章 3.8 函数与方程Tag内容描述:
1、8.5 直线、平面垂直的判定与性质最新考纲 考情考向分析1.理解空间线面垂直、面面垂直的判定定理和性质定理.2.理解直线与平面所成角的概念,了解二面角及其平面角的概念.直线、平面垂直的判定及其性质是高考中的重点考查内容,涉及线线垂直、线面垂直、面面垂直的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.1.直线与平面垂直(1)定义如果直线 l 与平面 内的任意一条 直线都垂直,则直线 l 与平面 互相垂直,记作 l,直线 l 叫做平面 的垂线,平面 叫做直线 l 的垂面.(2)判定。
2、8.4 直线、平面平行的判定与性质最新考纲 考情考向分析理解空间线面平行、面面平行的判定定理和性质定理.直线、平面平行的判定及其性质是高考中的重点考查内容,涉及线线平行、线面平行、面面平行的判定及其应用等内容题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.1线面平行的判定定理和性质定理文字语言 图形语言 符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行线面平行”)Error!l性质定理一条直线与一个平面平行,则过这条直线的任一平面与。
3、第 2 课时 导数与函数的极值、最值题型一 用导数求解函数极值问题命题点 1 根据函数图象判断极值例 1 设 f(x)是一个三次函数,f ( x)为其导函数,如图所示的是 yxf( x)的图象的一部分,则 f(x)的极大值与极小值分别是( )Af(2) 与 f(2) Bf (1)与 f(1)Cf(2) 与 f(2) Df (1)与 f(1)答案 A解析 由图象知,当 x0;当22 时,f(x)0.所以 f(x)在区间(,2)上为增函数,在区 间(2,2) 上为减函数,在区间(2,)上为增函数,所以 f(x)的极大值与极小值分别是 f(2)与 f(2)命题点 2 求函数的极值例 2 设函数 f(x)ln(x1)a( x2x),其中 aR .讨论函数 f(x)极。
4、2.1 不等关系与不等式最新考纲 考情考向分析了解不等关系,掌握不等式的基本性质.以理解不等式的性质为主,本节在高考中主要以客观题形式考查不等式的性质;以主观题形式考查不等式与其他知识的综合属低档题.1两个实数比较大小的方法(1)作差法Error! (a,bR)(2)作商法Error! (aR,b0)2不等式的基本性质性质 性质内容 特别提醒对称性 abbb,bcac 可加性 abacbc Error!acbc可乘性Error!acbd 同向同正可乘性 Error!ac bd 可乘方性ab0a nbn(nN,n1)a,b 同为正数可开方性 ab0 nanb(nN,n2)a,b 同为正数概念方法微思考1若 ab,且 a 与 b 都不。
5、5.1 任意角、弧度制及任意角的三角函数最新考纲 考情考向分析1.了解角、角度制与弧度制的概念,掌握弧度与角度的换算2.理解正弦函数、余弦函数、正切函数的定义.以理解任意角三角函数的概念、能进行弧度与角度的互化和扇形弧长、面积的计算为主,常与向量、三角恒等变换相结合,考查三角函数定义的应用及三角函数的化简与求值,考查分类讨论思想和数形结合思想的应用意识题型以选择题为主,低档难度.1角的概念(1)任意角:定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;分类:角按旋转方向分为正角、负角。
6、第 3 课时 证明与探索性问题题型一 证明问题例 1 设 O 为坐标原点,动点 M 在椭圆 C: y 21 上,过 M 作 x 轴的垂线,垂足为 N,x22点 P 满足 .NP 2NM (1)求点 P 的轨迹方程;(2)设点 Q 在直线 x3 上,且 1.证明:过点 P 且垂直于 OQ 的直线 l 过 C 的左焦OP PQ 点 F.(1)解 设 P(x,y),M(x0,y0),则 N(x0,0),(x x 0,y), (0,y 0).NP NM 由 ,得 x0x,y 0 y.NP 2NM 22因为 M(x0,y0)在 C 上,所以 1.x22 y22因此点 P 的轨迹方程为 x2y 22.(2)证明 由题意知 F(1,0).设 Q(3,t) ,P(m,n),则 ( 3, t), (1 m, n),OQ PF 33m tn,OQ。
7、10.2 排列与组合最新考纲 考情考向分析1.了解排列、组合的概念.2.会用排列数公式、组合数公式解决简单的实际问题.以理解和应用排列、组合的概念为主,常常以实际问题为载体,考查分类讨论思想,考查分析、解决问题的能力,题型以选择、填空题为主,难度为中档.1.排列与组合的概念名称 定义排列 按照一定的顺序排成一列组合从 n 个不同元素中取出 m(mn) 个元素合成一组2.排列数与组合数(1)排列数的定义:从 n 个不同元素中取出 m(mn)个元素的所有不同排列的个数叫做从 n个不同元素中取出 m 个元素的排列数,用 A 表示.mn(2)组合数的定义:。
8、第 3 课时 导数与函数的综合问题题型一 利用导数解或证明不等式1已知 f(x)是定义在(0,) 上的可导函数,f (1)0,且对于其导函数 f(x) 恒有 f(x)f(x )0,则使得 f(x)0 成立的 x 的取值范围是( )A B(0,1)C(1,) D(0,1)(1 ,)答案 B解析 令 g(x)f(x)e x,由 x0 时,f(x)f( x)0 恒成立,则 g(x) f(x)e xf(x )ex0,故 g(x)f(x)e x在(0,)上单调递减,又 f(1)0,所以 g(1)0.当 x1 时,f(x)e x0,得 f(x)0;当 0x1 时,f( x)ex0,得 f(x)0,故选 B.2设 f(x)是定义在 R 上的奇函数, f(2)0,当 x0 时,有 0 的解集是( )A(2,0) (2,) B( 2,0)(0,2)C。
9、高考专题突破三 高考中的三角函数与解三角形问题题型一 三角函数的图象和性质例 1 已知函数 f(x)5sin x cos x5 cos2x (其中 xR) ,求:3532(1)函数 f(x)的最小正周期;(2)函数 f(x)的单调区间;(3)函数 f(x)图象的对称轴和对称中心解 (1)因为 f(x) sin 2x (1cos 2x)52 532 5325 5sin ,(12sin 2x 32cos 2x) (2x 3)所以函数的最小正周期 T .22(2)由 2k 2x 2k (kZ),2 3 2得 k xk (kZ),12 512所以函数 f(x)的单调递增区间为(kZ)k 12,k 512由 2k 2x 2k (kZ),2 3 32得 k xk (kZ ),512 1112所以函数 f(x)的单调递减区间为(kZ)k 512,k 1112。
10、3.3 函数的奇偶性与周期性最新考纲 考情考向分析1.理解并会判断函数的奇偶性2.了解函数的周期性、最小正周期的含义.以理解函数的奇偶性、会用函数的奇偶性为主,常与函数的单调性、周期性交汇命题,加强函数与方程思想、转化与化归思想的应用意识,题型以选择、填空题为主,中等偏上难度.1函数的奇偶性奇偶性 定义 图象特点偶函数一般地,如果对于函数 f(x)的定义域内任意一个 x,都有 f(x)f(x),那么函数 f(x)就叫做偶函数关于 y 轴对称奇函数一般地,如果对于函数 f(x)的定义域内任意一个 x,都有 f(x)f(x ),那么函数 f(x)就叫做奇函数。
11、9.3 圆的方程最新考纲 考情考向分析掌握圆的标准方程与一般方程.以考查圆的方程为主,与圆有关的轨迹问题、最值问题也是考查的热点,属中档题.题型主要以选择、填空题为主,要求相对较低,但内容很重要,有时也会在解答题中出现.圆的定义与方程定义 平面内到定点的距离等于定长的点的轨迹叫做圆圆心为(a,b)标准式 (xa) 2(yb) 2r 2(r0)半径为 r充要条件:D 2E 24F0圆心坐标: ( D2, E2)方程一般式 x2y 2DxEyF0半径 r12D2 E2 4F概念方法微思考1.二元二次方程 Ax2BxyCy 2DxEy F0 表示圆的条件是什么?提示 Error!2.已知C:x 2y 2Dx EyF0,。
12、5.3 三角函数的图象与性质最新考纲 考情考向分析1.理解正弦函数、余弦函数、正切函数的定义及其图象与性质2.了解三角函数的周期性.以考查三角函数的图象和性质为主,题目涉及三角函数的图象及应用、图象的对称性、单调性、周期性、最值、零点考查三角函数性质时,常与三角恒等变换结合,加强数形结合思想、函数与方程思想的应用意识题型既有选择题和填空题,又有解答题,中档难度.1用五点法作正弦函数和余弦函数的简图(1)在正弦函数 ysin x,x 0,2的图象中,五个关键点是:(0,0) , ,(,0),(2,1),(2 ,0) (32, 1)(2)在余弦函数 ycos 。
13、3.2 函数的单调性与最值最新考纲 考情考向分析1.理解函数的单调性,会判断函数的单调性2.理解函数的最大(小)值的含义,会求简单函数的最大(小) 值.以基本初等函数为载体,考查函数的单调性、单调区间及函数最值的确定与应用;强化对函数与方程思想、转化与化归思想、分类讨论思想的考查,题型既有选择、填空题,又有解答题.1函数的单调性(1)单调函数的定义增函数 减函数定义一般地,设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x1,x 2定义当 x1f(x2),那么就说函数 f(x)在区间 D上是减函数图象描述。
14、3.7 函数的图象最新考纲 考情考向分析1.了解函数的三种表示法(解析法、图象法和列表法)2.掌握指数函数,对数函数及五种幂函数的图象和性质.函数图象的辨析;函数图象和函数性质的综合应用;利用图象解方程或不等式,题型以选择题为主,中档难度.1描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势 );(4)描点连线,画出函数的图象2图象变换(1)平移变换(2)对称变换yf(x) y f (x); 关 于 x轴 对 称 yf(x) y f(x) ; 关 于 y轴 对 称 yf(x) y f (x) ; 关 于 。
15、3.1 函数及其表示最新考纲 考情考向分析1.了解函数、映射的概念2.了解函数的定义域、值域及三种表示法(解析法、图象法和列表法)3.了解简单的分段函数,会用分段函数解决简单的问题.以基本初等函数为载体,考查函数的表示法、定义域;分段函数以及函数与其他知识的综合是高考热点,题型既有选择、填空题,又有解答题,中等偏上难度.1函数与映射函数 映射两个集合A,B设 A,B 是两个非空数集 设 A,B 是两个非空集合对应关系f:AB如果按照某种确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应如。
16、9.8 曲线与方程最新考纲 考情考向分析了解方程与曲线的对应关系,会求简单的曲线的方程.以考查曲线的轨迹、轨迹方程为主.题型主要以解答题的形式出现,题目为中档题,有时也会在选择、填空题中出现.1.曲线与方程的定义一般地,在直角坐标系中,如果某曲线 C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程 f(x,y )0 的实数解建立如下的对应关系:那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.2.求动点的轨迹方程的基本步骤概念方法微思考1.f(x0, y0)0 是点 P(x0,y 0)在曲线 f(x,y )0 上的充要条件吗?提示 是.。
17、3.6 对数与对数函数最新考纲 考情考向分析1.理解对数的概念,掌握对数的运算,会用换底公式2.理解对数函数的概念,掌握对数函数的图象、性质及应用3.了解对数函数的变化特征.以比较对数函数值大小的形式考查函数的单调性;以复合函数的形式考查对数函数的图象与性质,题型一般为选择、填空题,中低档难度.1对数的概念一般地,如果 axN(a0,且 a1),那么数 x 叫做以 a 为底 N 的对数,记作 xlog aN,其中 a 叫做对数的底数, N 叫做真数2对数的性质与运算法则(1)对数的运算法则如果 a0,且 a1,M0 ,N 0,那么:log a(MN)log aMlog aN;log。
18、3.5 指数与指数函数最新考纲 考情考向分析1.了解指数幂的含义,掌握有理数指数幂的运算2.理解指数函数的概念,掌握指数函数的图象、性质及应用3.了解指数函数的变化特征.直接考查指数函数的图象与性质;以指数函数为载体,考查函数与方程、不等式等交汇问题,题型一般为选择、填空题,中档难度.1分数指数幂(1)我们规定正数的正分数指数幂的意义是 (a0,m,nN *,且 n1)于是,在条mnnam件 a0,m,n N*,且 n1 下,根式都可以写成分数指数幂的形式正数的负分数指数幂的意义与负整数指数幂的意义相仿,我们规定 (a0,m,nN *,且 n1).0 的正n。
19、3.4 幂函数与二次函数最新考纲 考情考向分析1.了解幂函数的概念,掌握幂函数yx,yx 2,yx 3,y ,yx 的图象和1x 12性质2.了解幂函数的变化特征3.了解一元二次函数、一元二次方程、一元二次不等式之间的联系会解一元二次不等式.以幂函数的图象与性质的应用为主,常与指数函数、对数函数交汇命题;以二次函数的图象与性质的应用为主,常与方程、不等式等知识交汇命题,着重考查函数与方程,转化与化归及数形结合思想,题型一般为选择、填空题,中档难度.1幂函数(1)幂函数的定义一般地,形如 yx 的函数称为幂函数,其中 x 是自变量, 是常数(。
20、3.8 函数与方程最新考纲 考情考向分析了解函数零点的概念,掌握连续函数在某个区间上存在零点的判定方法.利用函数零点的存在性定理或函数的图象,对函数是否存在零点进行判断或利用零点(方程实根) 的存在情况求相关参数的范围,是高考的热点,题型以选择、填空为主,也可和导数等知识交汇出现解答题,中高档难度.1函数的零点(1)函数零点的定义对于函数 yf(x )(xD),把使 f(x)0 的实数 x 叫做函数 yf(x)( xD)的零点(2)三个等价关系方程 f(x)0 有实数根函数 yf (x)的图象与 x 轴有交点 函数 yf (x)有零点(3)函数零点的判定(零点存在性定理 )。