第 2 课时 导数与函数的极值、最值题型一 用导数求解函数极值问题命题点 1 根据函数图象判断极值例 1 设 f(x)是一个三次函数,f ( x)为其导函数,如图所示的是 yxf( x)的图象的一部分,则 f(x)的极大值与极小值分别是( )Af(2) 与 f(2) Bf (1)与 f(1)Cf(2
浙江省20届高考数学一轮 第4章 4.1 2项式定理Tag内容描述:
1、第 2 课时 导数与函数的极值、最值题型一 用导数求解函数极值问题命题点 1 根据函数图象判断极值例 1 设 f(x)是一个三次函数,f ( x)为其导函数,如图所示的是 yxf( x)的图象的一部分,则 f(x)的极大值与极小值分别是( )Af(2) 与 f(2) Bf (1)与 f(1)Cf(2) 与 f(2) Df (1)与 f(1)答案 A解析 由图象知,当 x0;当22 时,f(x)0.所以 f(x)在区间(,2)上为增函数,在区 间(2,2) 上为减函数,在区间(2,)上为增函数,所以 f(x)的极大值与极小值分别是 f(2)与 f(2)命题点 2 求函数的极值例 2 设函数 f(x)ln(x1)a( x2x),其中 aR .讨论函数 f(x)极。
2、11.3 二项分布及其应用最新考纲 考情考向分析1.了解独立事件的概念.2.了解独立重复试验的模型及二项分布.以了解独立重复试验、二项分布的概念为主,重点考查二项分布概率模型的应用.识别概率模型是解决概率问题的关键.在高考中,常以选择、填空题的形式考查,难度为中低档.1.相互独立事件(1)对于事件 A,B,若事件 A 的发生与事件 B 的发生互不影响,则称事件 A,B 是相互独立事件.(2)若 A 与 B 相互独立,则 P(AB)P (A)P(B).(3)若 A 与 B 相互独立,则 A 与 , 与 B, 与 也都相互独立.B A A B(4)若 P(AB)P(A)P (B),则 A 与 B 相互独立.。
3、高考专题突破二 高考中的导数应用问题题型一 利用导数研究函数性质例 1 (2018台州质检)已知函数 f(x)x 3|xa|(aR )(1)当 a1 时,求 f(x)在(0 ,f(0)处的切线方程;(2)当 a(0,1)时,求 f(x)在1,1上的最小值( 用 a 表示)解 (1)当 a1, x0,知 f(x)在a,1 上单调递增当1x0,即(x 22)e x0,因为 ex0,所以x 220,解得 0,所以x 2(a2)x a0 对 x(1,1) 都成立,即 a (x1)x2 2xx 1 x 12 1x 1 1x 1对 x( 1,1)都成立令 y(x1) ,1x 1则 y1 0.1x 12所以 y(x1) 在(1,1)上单调递增,1x 1所以 y0),由 f(x)0,得 xe.x ex2当 x(0 ,e)时,f(x)0,f (x)在(e,。
4、10.3 二项式定理最新考纲 考情考向分析1.了解二项式定理.2.理解二项式系数的性质.以理解和应用二项式定理为主,常考查二项展开式,通项公式以及二项式系数的性质,赋值法求系数的和也是考查的热点;本节内容在高考中以选择、填空题的形式进行考查,难度中档.1.二项式定理二项式定理 (ab) nC anC an1 b1C ank bkC bn(nN *)0n 1n kn n二项展开式的通项公式Tk1 C ank bk,它表示第 k1 项kn二项式系数 二项展开式中各项的系数 C (k0,1,2,n)kn2.二项式系数的性质(1)C 1,C 1.0n nC C C .mn 1 m 1n mn(2)C C .mn n mn(3)当 n 是偶数时, 项的。
5、4.1 导数的概念及运算最新考纲 考情考向分析1.了解导数的概念与实际背景,理解导数的几何意义2.会用基本初等函数的导数公式表和导数运算法则求函数的导数,并能求简单的复合函数的导数(限于形如 f(axb)的导数).导数的概念和运算是高考的必考内容,一般渗透在导数的应用中考查;导数的几何意义常与解析几何中的直线交汇考查;题型为选择题或解答题的第(1) 问,低档难度 .1导数与导函数的概念(1)一 般 地 , 函 数 y f(x)在 x x0 处 的 瞬 时 变 化 率 是 , 我 们 称limx 0 yx lim x 0 fx0 x fx0x它 为 函 数 y f(x)在 x x0 处 的 导 数 ,。