第 2 课时 简单的三角恒等变换题型一 三角函数式的化简1化简: .sin 2 2cos2sin( 4)答案 2 cos 2解析 原式 2 cos .2sin cos 2cos222sin cos 22化简: .2cos4x 2cos2x 122tan(4 x)sin2(4 x)答案 cos 2x1
浙江省20届高考数学一轮 第5章 高考专题突破3Tag内容描述:
1、第 2 课时 简单的三角恒等变换题型一 三角函数式的化简1化简: .sin 2 2cos2sin( 4)答案 2 cos 2解析 原式 2 cos .2sin cos 2cos222sin cos 22化简: .2cos4x 2cos2x 122tan(4 x)sin2(4 x)答案 cos 2x12解析 原式124cos4x 4cos2x 12sin(4 x)cos(4 x)cos2(4 x)2cos2x 124sin(4 x)cos(4 x) cos 2x.cos22x2sin(2 2x) cos22x2cos 2x 123化简: 2cos( )sin2 sin 解 原式sin2 2sin cos sin sin 2sin cos sin sin cos cos sin 2sin c。
2、5.4 简单的三角恒等变换最新考纲 考情考向分析1.掌握两角和与两角差的正弦、余弦、正切公式,掌握正弦、余弦、正切二倍角的公式2.掌握简单的三角函数式的化简、求值及恒等式证明.三角恒等变换是三角变换的工具,主要考查利用两角和与差的三角函数公式、二倍角公式进行三角函数的化简与求值,重在考查化简、求值,公式的正用、逆用以及变式运用,可单独考查,也可与三角函数的图象和性质、向量等知识综合考查,加强转化与化归思想的应用意识题型选择、填空、解答均有可能出现,中低档难度.1两角和与差的余弦、正弦、正切公式cos( )cos cos 。
3、6.5 复 数最新考纲 考情考向分析1.了解复数的定义、复数的模和复数相等的概念2.了解复数的加、减运算的几何意义3.理解复数代数形式的四则运算.本节主要考查复数的基本概念(复数的实部、虚部、共轭复数、复数的模等),复数相等的充要条件,考查复数的代数形式的四则运算,重点考查复数的除法运算,与向量结合考查复数及其加法、减法的几何意义,突出考查运算能力与数形结合思想一般以选择题、填空题的形式出现,难度为低档.1复数的有关概念(1)定义:形如 abi(a,bR )的数叫做复数,其中 a 叫做复数 z 的实部,b 叫做复数 z 的虚部(i 为虚数。
4、9.6 双曲线最新考纲 考情考向分析了解双曲线的定义、标准方程、几何图形及简单几何性质,了解直线与双曲线的位置关系.主要侧重双曲线的方程以及以双曲线方程为载体,研究参数 a,b,c 及与渐近线有关的问题,其中离心率和渐近线是重点.题型为选择、填空题.1.双曲线定义平面内与两个定点 F1,F 2 的距离的差的绝对值等于常数(小于|F 1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合 P M|MF1| MF2|2a,|F 1F2|2c ,其中 a,c 为常数且 a0,c0.(1)当 2a|F1F2|时,P 点不存在.2.双曲线的标准方程。
5、1.1 集 合最新考纲 考情考向分析1.了解集合、元素的含义及其关系.2.理解集合的表示法.3.了解集合之间的包含、相等关系.4.理解全集、空集、子集的含义.5.会求简单集合间的并集、交集.6.理解补集的含义并会求补集.集合的交、并、补运算及两集合间的包含关系是考查的重点,在集合的运算中经常与不等式、函数相结合,解题时常用到数轴,考查学生的数形结合思想和计算推理能力,题型以选择题为主,低档难度.1集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性(2)元素与集合的关系是属于或不属于,用符号或 表示(3)集合的表示法:列举。
6、5.6 正弦定理和余弦定理最新考纲 考情考向分析掌握正弦定理、余弦定理及其应用.以利用正弦、余弦定理解三角形为主,常与三角函数的图象和性质、三角恒等变换、三角形中的几何计算交汇考查,加强数形结合思想的应用意识题型多样,中档难度.1正弦定理、余弦定理在ABC 中,若角 A,B ,C 所对的边分别是 a,b,c,R 为ABC 外接圆半径,则定理 正弦定理 余弦定理内容 (1) 2Rasin A bsin B csin C (2)a2b 2c 22bccos A;b2c 2a 22cacos B;c2a 2b 22abcos C变形(3)a2Rsin A,b2Rsin B,c2Rsin C ;(4)sin A ,sin B ,sin Ca2R b2R;c2R(5)abcs。
7、3.6 对数与对数函数最新考纲 考情考向分析1.理解对数的概念,掌握对数的运算,会用换底公式2.理解对数函数的概念,掌握对数函数的图象、性质及应用3.了解对数函数的变化特征.以比较对数函数值大小的形式考查函数的单调性;以复合函数的形式考查对数函数的图象与性质,题型一般为选择、填空题,中低档难度.1对数的概念一般地,如果 axN(a0,且 a1),那么数 x 叫做以 a 为底 N 的对数,记作 xlog aN,其中 a 叫做对数的底数, N 叫做真数2对数的性质与运算法则(1)对数的运算法则如果 a0,且 a1,M0 ,N 0,那么:log a(MN)log aMlog aN;log。
8、3.5 指数与指数函数最新考纲 考情考向分析1.了解指数幂的含义,掌握有理数指数幂的运算2.理解指数函数的概念,掌握指数函数的图象、性质及应用3.了解指数函数的变化特征.直接考查指数函数的图象与性质;以指数函数为载体,考查函数与方程、不等式等交汇问题,题型一般为选择、填空题,中档难度.1分数指数幂(1)我们规定正数的正分数指数幂的意义是 (a0,m,nN *,且 n1)于是,在条mnnam件 a0,m,n N*,且 n1 下,根式都可以写成分数指数幂的形式正数的负分数指数幂的意义与负整数指数幂的意义相仿,我们规定 (a0,m,nN *,且 n1).0 的正n。
9、5.3 三角函数的图象与性质最新考纲 考情考向分析1.理解正弦函数、余弦函数、正切函数的定义及其图象与性质2.了解三角函数的周期性.以考查三角函数的图象和性质为主,题目涉及三角函数的图象及应用、图象的对称性、单调性、周期性、最值、零点考查三角函数性质时,常与三角恒等变换结合,加强数形结合思想、函数与方程思想的应用意识题型既有选择题和填空题,又有解答题,中档难度.1用五点法作正弦函数和余弦函数的简图(1)在正弦函数 ysin x,x 0,2的图象中,五个关键点是:(0,0) , ,(,0),(2,1),(2 ,0) (32, 1)(2)在余弦函数 ycos 。
10、3.7 函数的图象最新考纲 考情考向分析1.了解函数的三种表示法(解析法、图象法和列表法)2.掌握指数函数,对数函数及五种幂函数的图象和性质.函数图象的辨析;函数图象和函数性质的综合应用;利用图象解方程或不等式,题型以选择题为主,中档难度.1描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势 );(4)描点连线,画出函数的图象2图象变换(1)平移变换(2)对称变换yf(x) y f (x); 关 于 x轴 对 称 yf(x) y f(x) ; 关 于 y轴 对 称 yf(x) y f (x) ; 关 于 。
11、3.8 函数与方程最新考纲 考情考向分析了解函数零点的概念,掌握连续函数在某个区间上存在零点的判定方法.利用函数零点的存在性定理或函数的图象,对函数是否存在零点进行判断或利用零点(方程实根) 的存在情况求相关参数的范围,是高考的热点,题型以选择、填空为主,也可和导数等知识交汇出现解答题,中高档难度.1函数的零点(1)函数零点的定义对于函数 yf(x )(xD),把使 f(x)0 的实数 x 叫做函数 yf(x)( xD)的零点(2)三个等价关系方程 f(x)0 有实数根函数 yf (x)的图象与 x 轴有交点 函数 yf (x)有零点(3)函数零点的判定(零点存在性定理 )。
12、3.1 函数及其表示最新考纲 考情考向分析1.了解函数、映射的概念2.了解函数的定义域、值域及三种表示法(解析法、图象法和列表法)3.了解简单的分段函数,会用分段函数解决简单的问题.以基本初等函数为载体,考查函数的表示法、定义域;分段函数以及函数与其他知识的综合是高考热点,题型既有选择、填空题,又有解答题,中等偏上难度.1函数与映射函数 映射两个集合A,B设 A,B 是两个非空数集 设 A,B 是两个非空集合对应关系f:AB如果按照某种确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应如。
13、第 2 课时 定点与定值问题题型一 定点问题例 1 (2018湖州模拟)已知椭圆 y 21( a0)的上顶点为 B(0,1) ,左、右焦点分别为x2a2F1,F 2,BF 2 的延长线交椭圆于点 M, 4 .BM F2M (1)求椭圆的标准方程;(2)若直线 l 交椭圆于 P,Q 两点,且 kBPk BQm( m 为非零常数) ,求证:直线 l 过定点.(1)解 方法一 设 M(x0,y0),F2(c,0),则由 4 ,BM F2M 得Error! 即Error!代入椭圆方程得 1,又 a2c 21,所以 a22,16c29a2 19所以椭圆的标准方程为 y 21.x22方法二 如图,连接 BF1,MF1,设|BF 1|BF 2|3n,则|F 2M|n,又| MF1|MF 2| |BF1| BF2|6n,所。
14、高考专题突破六 高考中的圆锥曲线问题第 1 课时 范围、最值问题题型一 范围问题例 1 (2018浙江)如图,已知点 P 是 y 轴左侧( 不含 y 轴)一点,抛物线 C:y 24x 上存在不同的两点 A,B 满足 PA,PB 的中点均在 C 上.(1)设 AB 中点为 M,证明:PM 垂直于 y 轴;(2)若 P 是半椭圆 x2 1(x0)上的动点,求PAB 面积的取值范围.y24(1)证明 设 P(x0,y0),A ,B .(14y21,y1) (14y2,y2)因为 PA,PB 的中点在抛物线上,所以 y1,y2为方程 24 ,(y y02 ) 14y2 x02即 y22y 0y8 x0y 0 的两个不同的实根.20所以 y1y 22y 0,所以 PM 垂直于 y 轴.(2)解 。
15、第 3 课时 证明与探索性问题题型一 证明问题例 1 设 O 为坐标原点,动点 M 在椭圆 C: y 21 上,过 M 作 x 轴的垂线,垂足为 N,x22点 P 满足 .NP 2NM (1)求点 P 的轨迹方程;(2)设点 Q 在直线 x3 上,且 1.证明:过点 P 且垂直于 OQ 的直线 l 过 C 的左焦OP PQ 点 F.(1)解 设 P(x,y),M(x0,y0),则 N(x0,0),(x x 0,y), (0,y 0).NP NM 由 ,得 x0x,y 0 y.NP 2NM 22因为 M(x0,y0)在 C 上,所以 1.x22 y22因此点 P 的轨迹方程为 x2y 22.(2)证明 由题意知 F(1,0).设 Q(3,t) ,P(m,n),则 ( 3, t), (1 m, n),OQ PF 33m tn,OQ。
16、高考专题突破二 高考中的导数应用问题题型一 利用导数研究函数性质例 1 (2018台州质检)已知函数 f(x)x 3|xa|(aR )(1)当 a1 时,求 f(x)在(0 ,f(0)处的切线方程;(2)当 a(0,1)时,求 f(x)在1,1上的最小值( 用 a 表示)解 (1)当 a1, x0,知 f(x)在a,1 上单调递增当1x0,即(x 22)e x0,因为 ex0,所以x 220,解得 0,所以x 2(a2)x a0 对 x(1,1) 都成立,即 a (x1)x2 2xx 1 x 12 1x 1 1x 1对 x( 1,1)都成立令 y(x1) ,1x 1则 y1 0.1x 12所以 y(x1) 在(1,1)上单调递增,1x 1所以 y0),由 f(x)0,得 xe.x ex2当 x(0 ,e)时,f(x)0,f (x)在(e,。
17、高考专题突破一 高考中的不等式问题题型一 含参数不等式的解法例 1 解关于 x 的不等式 x2ax 10(a R)解 对于方程 x2ax 10,a 24.(1)当 0,即 a2 或 a3 的解集为 R,则实数 m 的取值范围是_答案 (,4)(2 ,)解析 依题意得,|x1| xm| |(x1)( xm)|m1|,即函数 y|x1| xm|的最小值是|m 1|,于是有 |m1|3,m13,由此解得 m2.因此实数 m 的取值范围是(,4)(2 ,) 题型二 线性规划问题例 2 (2018浙江五校 联考)已知实数 x,y 满足约束条件Error!且 zaxy 的最大值为 16,则实数 a_,z 的最小值为_答案 2 1解析 如图,作出不等式组所表示的可行域 (AB。
18、高考专题突破四 高考中的数列问题题型一 等差数列、等比数列的基本问题例 1 (2018浙江杭州地区四校 联考)已知数列 an满足 a11, ,记1a2n 4 1an 1Sna a a ,若 S2n1 S n 对任意的 nN *恒成立21 2 2nt30(1)求数列a 的通项公式;2n(2)求正整数 t 的最小值解 (1)由题意得 4,1a 2n 1 1a2n则 是以 1 为首项,4 为公差的等差数列,1a2n则 1(n1)44n3,1a2n则 a .2n14n 3(2)不妨设 bnS 2n1 S na a a ,2n 1 2n 2 22n 1考虑到 bnb n1 a a a (a a a a )2n 1 2n 2 22n 1 2n 2 2n 3 22n 2 22n 3a a a2n 1 22n 2 22n 3 14n 1 18n 5 18n 9 0,18n 2 18n 。
19、高考专题突破五 高考中的立体几何问题题型一 求空间几何体的表面积与体积例 1 (1)一个正方体挖去一个多面体所得的几何体的三视图如图所示,其中正视图、侧视图和俯视图均为边长等于 2 的正方形,则这个几何体的表面积为( )A.164 B.1643 5C.204 D.2043 5答案 D解析 由三视图可知,该几何体是棱 长为 2 的正方体的内部挖去一个底面 边长为 2 的正四棱锥,将三视图还原可得如图,可得其表面积为 S52 24 2 204 ,故选 D.12 5 5(2)(2018浙江省嘉兴市第一中学期中) 如图,已知 AB 为圆 O 的直径,C 为圆上一动点,PA圆 O 所在平面,且 PAAB2,过。
20、高考专题突破三 高考中的三角函数与解三角形问题题型一 三角函数的图象和性质例 1 已知函数 f(x)5sin x cos x5 cos2x (其中 xR) ,求:3532(1)函数 f(x)的最小正周期;(2)函数 f(x)的单调区间;(3)函数 f(x)图象的对称轴和对称中心解 (1)因为 f(x) sin 2x (1cos 2x)52 532 5325 5sin ,(12sin 2x 32cos 2x) (2x 3)所以函数的最小正周期 T .22(2)由 2k 2x 2k (kZ),2 3 2得 k xk (kZ),12 512所以函数 f(x)的单调递增区间为(kZ)k 12,k 512由 2k 2x 2k (kZ),2 3 32得 k xk (kZ ),512 1112所以函数 f(x)的单调递减区间为(kZ)k 512,k 1112。