章末复习课考点 1 二次根式的定义及有意义的条件1使根式 有意义的 a 的取值范围是_a5 Bx5Cx 5 Dx 56下列式子中,错误的是( B )A. 42 8B. ( 4)( 9) 4 9C. 43 233D. 2 4925 4 925 35 657化简: _3 _, _2 _,18 2 20
浙教版八年级数学下册1.2 二次根式的性质1课件Tag内容描述:
1、章末复习课考点 1 二次根式的定义及有意义的条件1使根式 有意义的 a 的取值范围是_a1_11 a2使代数式 有意义的 x 的取值范围是_x 且 x2_1 2xx 2 123若 y ,则 xy_1_x 3 3 x134若|a 2| 0,则 a22b_2_b 3考点 2 二次根式的性质及化简5下列运算正确的是( D )A( )25 B. 518 22C 5 D. 3( 5)2 322 26下列各组二次根式中,化简后被开方数相同的一组是( B )A. 和 B. 和3 9 24 54C. 和 D. 和18 3212 57下列根式中,属于最简二次根式的是( A ) A. B.a2 112C. D.8128(1)计算 |8| ,正确的结果是_8_;82 ( 8)2(2)计算 的值为_ _3225 3289化简:(1) 。
2、16.1 二根次式,第16章 二次根式,导入新课,讲授新课,当堂练习,课堂小结,第2课时 二次根式的性质,1.经历二次根式的性质的发现过程,体验归纳、猜想的思想方法.(重点) 2.会运用二次根式的两个性质进行化简计算.(难点),导入新课,情景引入,问题1 下列数字谁能顺利通过下面两扇门进入客厅?,算术平方根之门,平方之门,0,-4,-1,a,a0,1,我们都是非负数哟,问题2 若下列数字想从客厅出来,谁能顺利通过两扇门出来呢?,算术平方根之门,平方之门,0,-4,-1,1,16,4,1,a,a为任意数,我们都是非负数,可出来之前我们有正数,零和负数.,思考 你发现了什么。
3、阶 段 性 测 试(二)考查范围:第 1 章 1.11.3 总分:100 分一、选择题(每小题 6 分,共 30 分)1计算 的结果是( B )8 2A. B4 C. D 210 62下列各式计算正确的是( D )A. B4 3 12 3 5 3 3C2 3 6 D. 33 3 3 27 33能使等式 成立的 x 的取值范围是( C )xx 2 xx 2Ax2 Bx 0Cx 2 Dx 24下列各式中,与(2 )的积为有理数的是( D )3A2 B2 3 3C2 D23 35要焊接一个如图所示的钢架,需要的钢材长度是( A ) A(3 7)m B(5 7)m5 3C(7 3)m D(3 5)m5 7二、填空题(每小题 5 分,共 25 分)6计算: _ _8 2 27计算:( 1) 2_42 _3 38一个斜坡与水平方向的夹角是 30,则。
4、1.3 二次根式的运算(2)A 练就好基础 基础达标1计算 3 2 的结果是( A )5 5A. B25 5C3 D652计算 的结果是( B )12 3A3 B. 3C2 D33 33已知二次根式 与 可以合并成一项,则 a 的取值不可能是( D )a 2A. B212C8 D124计算 3 的结果是( C )2 18A3 B 520 2C6 D42 205已知 a ,b ,则 a 与 b 的关系是( C )12 1 12 1A相等 B互为相反数C互为倒数 D平方值相等6计算 的结果是 ( C )27 823A. B.3433C. D2533 37下列各式计算正确的是( D )A3 2 1 B. 12 2 2 3C. D. 77 2 5 72 2 28下列二次根式,不能与 合并的有_(填写序号即可)12 ; ; ; ; .48 125113 。
5、1.3 二次根式的运算(3)A 练就好基础 基础达标1若直角三角形一锐角为 30,则它的三边之比可能是( B )A123B12 3C1 2 3D11 22河堤横断面如图所示,堤高 BC5 m ,迎水坡 AB 的坡比是 1 ,则 AC 的长是( A )3A5 m B10 m 3C15 m D20 m3一块正方形的瓷砖,面积为 50 cm2,它的边长大约在( D )A45 cm 之间 B56 cm 之间C67 cm 之间 D78 cm 之间4如图所示,小正方形边长为 1,连结小正方形的三个顶点可得ABC,则 AC 边上高的长是( C )A. B.322 3105C. D.355 45552018枣庄我国南宋著名数学家秦九韶在他的著作 数书九章一书中,给出了著名的秦九韶公式。
6、数学欣赏数学欣赏 20202020年八年级下学期上课资料年八年级下学期上课资料 二次根式的乘除二次根式的乘除(1 1) 淮安市启明外国语学校 问题引入问题引入 C B A 1.1.如图,小正方形的边长为如图,小正方形的边长为1 1,ABAB ,BC= (1 1)画出矩形)画出矩形ABDABD; (2 2)矩形)矩形ABCDABCD的面积是多少?的面积是多少? 2.2.已知菱形的两条。
7、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第1章 二次根式 1.1 二次根式,第1章 二次根式 1.1 二次根式,1、如果x2=3,那么x=_ .,课前回顾,2、16的平方根是_ . 16的算术平方根是_.,3、7有没有平方根?有没有算术平方根?,正数和0都有算术平方根和平方根;负数既没有算术平方根,也没有平方根.,课前回顾, 正数有两个平方根且互为相反数; 0有一个平方根就是0; 负数没有平方根.,平方根的性质:,根据下图的直角三角形、正方形和等边三角形的条件,完成以下填空:,直角三角形的边长是 .,情境导入,(b 3)cm,正方形的边长是,探究1,S,。
8、1.3 二次根式的运算(1)A 练就好基础 基础达标1化简 的结果是( A )545A2 B. C. D.25 2 252下列二次根式中,属于最简二次根式的是( A )A. B. C. D.3 12 18 543下列计算中正确的是( C )A2 3 6 B(5 )2255 5 5 5C. 4 D3 2 612 8 6 2 3 54下列计算中错误的是( C )A. 7 B. 14 7 2 60 30 2C. 9 D. 3 6 282a 2aa5已知 a, b,则 等于( C ) 7 70 10Aab BbaC. Dabba6下列把有理数与二次根式的乘积化成一个二次根式,其中正确的有_(填序号)9 ;5 325 454 ;3 423 163 483 ;2 .2 32 2 92 18。
9、1.1二次根式,(1) 3的算术平方根是,(2) 有意义吗?为什么?,(3) 一个非负数a的算术平方根应表示为,根据下图所示的直角三角形、正方形和等边三角形的条件,完成以下填空:,(b 3)cm,直角三角形的边长是: 。 正方形的边长是: 。 等腰直角三角形的的直角边长是: 。,你认为所得的各代数式的共同特点是什么?,S,各代数式的共同特点:,1。表示的是算术平方根,2。根号内含有字母的代数式,为了方便起见,我们把一个数的算术平方根也叫二次根式。,像 这样表示的是算术平方根,且根号内含有字母的代数式叫二次根式。,例如: 也叫二次根式。。
10、1.3 二次根式的运算(3),斜坡的竖直高度和对应的水平宽度的比叫做坡比学.科.网zxxk.组卷网,1、一辆汽车从一道斜坡上开过,已知斜坡的坡比为1:10,AC=20m,求斜坡的长.,问题情景,(1)、一道斜坡的坡比为1:3,已知AC=6米,则斜坡AB的长为 ;,6米,补充练习,2、一名自行车极限运动爱好者准备从点A处骑到点B处。(如图),若斜坡AB的坡比为1:1,AE=2米,该爱好者从点A处骑到点B处后升高了多少米?他通过的路程是多少米?学.科.网zxxk,问题情景,在日常生活和生产实际中,我们在解决一些问题,尤其是涉及直角三角形的边长计算的问题时,经常用到二。
11、1.3,二次根式的运算(3),如图,架在消防车上的云梯AB长为15m, AD:BD=1 :0.6,云梯底 部离地面的距离BC为2m。 你能求出云梯的顶端离地 面的距离AE吗?,节前问题:,A,D,E,B,C,在日常生活和生产实际中,我们在解决一些问题,尤其是涉及直角三角形的边长计算的问题时,经常用到二次根式及其运算。,在ABC中,C=Rt,记AB=c,BC=a,AC=b。 (1)若a:c= ,求b:c.,(2)若 求b。,做一做,例6: 如图,扶梯AB的坡比(BE与AE的长度之比)为1:0.8,滑梯CD的坡比为1:1.6,AE= 米,BC= CD。一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少。
12、,.二次根式的运算(二),复习: 二次根式计算、化简的结果要求 符合什么?,(1)被开方数不含分母,分母不含根号; (2)被开方数中不含能开得尽方的因数 或因式.,热身运动,.计算:,a,0,(),(),(),(),以前我们学过的整式运算法则和方法也适用于二次根式的运算,例如:类似于同类项,我们可以把相同二次根式的项合并,.下列二次根式中,可与 合并的 二次根式是( ),.下列各式中,计算正确的是( ),以下问题你能用同样的方法计算吗?,下列计算哪些正确,哪些不正确?,(不正确),(不正确),(不正确),(正确),(不正确),彗眼识。
13、1.3二次根式的运算(1),二次根式的性质:,(a0),(1),(2),a,-a,(a0)(a0),|a|=,a,二次根式的性质:,(3),(4),(a 0 , b0)学.科.网zxxk.组卷网,(a 0 , b0),回顾:,你会计算吗? (1) (2),积和商的二次根式的性质:,反过来:,二次根式乘除运算法则,二次根式的乘法运算法则是什么?用文字语言怎么表达?对于运算的结果有什么要求?,二次根式相乘:被开方数相乘, 根指数不变;,尽量化简。学.科.网zxxk.,(1),(2),归纳1,二次根式的除法运算法则用文字语言怎么表达?对于运算的结果有什么要求?,二次根式相除:被开方数相除,根。
14、1.3二次根式的运算(1),二次根式的性质:,(a0),(1),(2),a,-a,当a0时,= ;当a0时,= 。,|a|,a,二次根式的性质:,(3),(4),(a 0 , b0),(a 0 , b0),二次根式有下面运算的性质,(a 0 , b0),(a 0 , b0),你能用二次根式上面运算的性质来计算吗?,例1:计算,注意: 不能写成,例2: 一个正三角形路标如图。 若它的边长为 个单位, 求这个路标的面积。,A,B,C,D,如图,架在消防车上的云梯AB长为15m, AD:BD=1 :0.6,云梯底 部离地面的距离BC为2m。 你能求出云梯的顶端离地 面的距离AE吗?,引申与提高:,A,D,E,B,C,小结,二次。
15、1.2 二次根式的性质(2)A 练就好基础 基础达标1下列式子中,属于最简二次根式的是( B )A. B.4 11C. D.18152化简 的结果是( B )40A20 B2 10C2 D45 103若直角三角形的两条直角边长分别为 cm 和 cm,那么此直角三角形的斜边长是( 13 14B )A3 cm B3 cm2 3C9 cm D27 cm4计算 的结果是( B )( 5)23A5 B 53 3C5 D3035若 ( )2,则 x 的取值范围是( B )( x 5)2 5 xAx5 Bx5Cx 5 Dx 56下列式子中,错误的是( B )A. 42 8B. ( 4)( 9) 4 9C. 43 233D. 2 4925 4 925 35 657化简: _3 _, _2 _,18 2 20 5 _2 _, _。
16、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第1章 二次根式 1.2 二次根式的性质,在实数范围内,负数没有平方根.,下列各式是二次根式吗? .,回顾旧知、掌握新知,表示一些正数的算术平方根,a叫被开方数,,回顾旧知、掌握新知,2.a可以是数,也可以是式.,4.a0, 0 .,3.形式上含有二次根号 .,5.既可表示开方运算,也可表示运算的结果.,1.表示a的算术平方根.,( 双重非负性),回顾旧知、掌握新知,请比较左右两边的式子,想一想: 1、 与 有什么关系? 2、当 时, 当 时,一般地,二次根式有下面的性质:,2,2,5,5,0,0,探索一:,|a|,0,2,2,3,3,探索二。
17、1.2 二次根式的性质(1)A 练就好基础 基础达标1化简 的正确结果是( A )( 10)2A10 B100 C 10 D1002. ( D )(2 2)2A0 B2C. 2 D 22 23计算 |11| 的正确结果是( B )( 11)2 112A11 B11C22 D224若 4,则 x 的值为( D )x2A2 B2 C16 D45下列结论不正确的是( B )A. |a2| (a 2)2B当 a2 时, 2a( a 2)2C当 a2 时, a2(a 2)2D当 a2 时, 2a(a 2)26如果 1a,那么( B )(a 1)2Aa1 Da 17下列式子正确的是( B )A. 9 B ( )2332 3C. 2 D( )29( 2)2 38化简 ( )2,下面四个选项中,你认为解答正确的是( C )(x 3)2 2 xA原式(x 3)(2。
18、,1.2二次根式的性质(2),二次根式有哪些性质?,口诀:二次根式的平方等于被开方数学.科.网zxxk.组卷网,10,10,10,做一做学.科.网zxxk.,做一做,一般地,二次根式有下面的性质:,慧眼识真!,思考:,例1 化简,(1),(2),(3),解:,=,=,12,(1),15,=,180,(3),=,=,=,3,(2),=,=,5,例2 化简,;,(1),(2),解:,(1),=,=,(2),=,=,=,二次根式化简的要求:,1.根号内不再含有开得尽方的因式,2.根号内不再含有分母,练一练1:化简:,例4:先化简,再求出各算式的近似值(精确到0.01),合理应用二次根式的性质,可以简化实数的运算!,练习2,先化简,再求出。
19、,a,9,4,16,15,17,参考右图,完成以下填空:,2,7,一般地,二次根式有下面的性质:,性质一:,3,5,大家抢答,性质二:,填空:,请比较左右两边的式子,议一议: 与 有什么关系?当 时, ;当 时,一般地,二次根式有下面的性质:,2,2,5,5,0,0,相等,(7) 数 在数轴上的位置如图,则,(8)如图, 是直角坐标系中一点,求点P到原点的距离.,例1计算:,例2 计算:,1.计算下列各题:,(1),(2),试一试,小结,二次根式的性质及它们的应用:,(1)(2),2,2,2,。
20、,1.2 二次根式的性质(1),合作学习:,已知下列各正方形的面积,求其边长.学.科.网zxxk.组卷网,你能猜想,= ;,= ;,试一试:,3,= ;,31,一般地,二次根式有下面的性质:学.科.网zxxk.,2.3,5,3,口答:,请比较左右两边的式子, 议一议: 与 有什么关系?,3,3,5,5,0,0,填空:,大家抢答,比一比:,比较分析 和,先开方,后平方,先平方,后开方,a0,a取全体实数,a,a学.科.网,根号a的平方,根号下a平方,讲解例题,练一练:,计算:,练一练:,数 在数轴上的位置如图,则,0,1,讲解例题,练习,练一练:,1、判断题,A,3.实数a、b、c在数轴上的位置如图所示,化简,练一练:,。