第17章 一元二次方程 单元测试 (满分150分,考试时间100分钟) 一、选择题(每题4分,共32分) 1、若关于x的方程(1)x1是一元二次方程,则的值是( ) A、0B、1C、 1D、1 2、下列方程: x2=0, -2=0, 2+3x=(1+2x)(2+x), 3-=0,-8x+ 1=0中
浙教版八年级数学下册2.2一元二次方程的解法2同步练习含答案Tag内容描述:
1、第17章 一元二次方程 单元测试(满分150分,考试时间100分钟)一、选择题(每题4分,共32分)1、若关于x的方程(1)x1是一元二次方程,则的值是( )A、0B、1C、 1D、12、下列方程: x2=0, -2=0, 2+3x=(1+2x)(2+x), 3-=0,-8x+ 1=0中,一元二次方程的个数是( )A、1个 B、2个 C、3个 D、4个3、把方程(x-)(x+)+(2x-1)2=0化为一元二次方程的一般形式是( )A、5x2-4x-4=0 B、x2-5=0 C、5x2-2x+1=0 D、5x2-4x+6=04、方程x2=6x的根是( )A、x1=0,x2=-6 B、x1=0,x2=6 C、x=6 D、x=05、不解方程判断下列方程中无实数根的是( )A、-x2=2x-1 B、4x2+4x+=0。
2、第第 2 章一元二次方程期末复习能力达标训练章一元二次方程期末复习能力达标训练 1(附答案)(附答案) 1某超市一月份的营业额为 25 万元,三月份时因新冠疫情下降到 16 万元,若平均每月下降率为 x,则由 题意列方程应为( ) A25(1+x)216 B25(1x)216 C16(1+x)225 D251+(1x)+(1x)216 2若 x1 是关于 x 的一元二次方程 ax2+bx+10(a。
3、第第 2 章一元二次方程的应用期末复习专题提升训练(附答案)章一元二次方程的应用期末复习专题提升训练(附答案) 1某省加快新旧动能转换,促进企业创新发展某企业一月份的营业额是 1000 万元,月平均增长率相同, 第一季度的总营业额是 3990 万元若设月平均增长率是 x,那么可列出的方程是( ) A1000(1+x)23990 B1000+1000(1+x)+1000(1+x)23990 C100。
4、阶 段 性 测 试(四)考查范围:第 2 章 2.12.4 总分:100 分一、选择题(每小题 5 分,共 30 分)1设 , 是一元二次方程 x22x 10 的两个根,则 的值是( D )A2 B1C2 D12若 x2 是关于 x 的一元二次方程 x2 axa 20 的一个根,则 a 的值为( C )32A1 或 4 B1 或4C1 或4 D1 或 43某农机厂四月份生产零件 50 万个,第二季度共生产零件 182 万个设该厂五、六月份平均每月生产零件个数的增长率为 x,那么 x 满足的方程是( B )A50(1x) 2182B5050(1x) 50(1x )2182C50(12x)182D5050(1x )50(12x) 1824a,b,c 为常数,且 ac0,则关于 x 的方程 ax2bxc0 根。
5、章末复习课考点 1 一元二次方程的有关概念1下列方程中,属于一元二次方程的是( C )Ax 2 0 Bax 2bx 01x2C(x1)(x2)1 D3x 22xy5y 202已知关于 x 的方程 x2m 2x20 的一个根是 1,则 m 的值是( C )A1 B2C1 D23若 n(n0) 是关于 x 的方程 x2mx 3n0 的根,则 mn_3_考点 2 一元二次方程的解法4把方程 x24x 60 配方成(xm) 2n 的形式,结果应是( D )A(x 4)22 B(x2) 26C(x2) 28 D(x2) 2105方程 x(x1)x 的根是( D )Ax2 Bx 2Cx 1 2,x 20 Dx 12,x 206用适当的方法解下列方程(1)(2x3) 2250;(2)4x23x10;(3)3(x2) 2x(x 2);(4)(x1)( x8)2.【答案】 (1)x1。
6、专题分类突破三 一元二次方程的应用归类类型 1 增长率与营销问题【例 1】 受益于国家支持新能源汽车发展等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2015 年利润为 2 亿元,2017 年利润为 2.88 亿元(1)求该企业从 2015 年到 2017 年利润的年平均增长率;(2)若 2018 年保持前两年利润的年平均增长率不变,该企业 2018 年的利润能否超过 3.4 亿元?解:(1)设这两年该企业年利润平均增长率为 x.根据题意,得 2(1x) 22.88 ,解得 x10.220% ,x 22.2 (不合题意,舍去) 答:这两年该企业年利润平均增长率为 20%.(2)如果 2。
7、2.3 一元二次方程的应用(一),学校图书馆去年年底图书馆有藏书5万册,为了扩大同学们的阅读量,准备购买新图书 (1)若计划以年平均增长20%的速度购进新图书,你预计今年年底有 册,明年年底有图书 册。,(2)若明年年底要将图书增加到7.5万册.则这两年的年平均增长率为多少?(精确到0.01)学.科.网zxxk.组卷网,等量关系:经过两年平均增长后的数量=7.5万册,开启智慧,学校图书馆去年年底图书馆有藏书5万册,为了扩大同学们的阅读量,准备购买新图书 (2)若明年年底要将图书增加到7.5万册.则这两年的年平均增长率为多少?学.科.网zxxk,。
8、一元二次方程的应用(2),鲜花为你盛开,你一定行!,O,N,如图,红点从O出发,以3米/秒的速度向东前进, 经过t秒后,红点离O的距离ON= .,(1),3t,|40-3t|,N,N,鲜花为你盛开,你一定行!,O,N,M,北,东,如图,蓝、红两点同时从O点出发,红点以3米/秒的速度向东前进,蓝点以2米/秒的速度向北前进,经过t秒后,两点的距离MN 是 (代数式表示),(3),(4),BO=30米,CO=40米,蓝从B点,红从C点同时出发,其他条件不变,经过t秒后,两点的距离MN的距离是 (代数式表示),O,N,M,北,东,B,C,O,N,M,北,东,O,N,M,北,东,O,N,M,北,东,B,C,B,C,B,C,BO=30。
9、2.3 一元二次方程的应用(1)A 练就好基础 基础达标1某文具店三月份销售铅笔 100 支,四、五两个月销售量连续增长,若月平均增长率为x,则该文具店五月份销售铅笔的支数是( B )A100(1x) B100(1x) 2C100(1x 2) D100(12x)2某超市一月份的营业额为 36 万元,三月份的营业额为 48 万元,设每月的平均增长率为x,则可列方程( D )A48(1x) 2 36 B48(1x) 2 36C36(1x) 2 48 D36(1x) 2 4832018绵阳在一次酒会上,每两人都只碰一次杯,如果一共碰杯 55 次,则参加酒会的人数为( C )A9 B10C11 D12【解析】 设参加酒会的人数为 x,根据题意,得 x(x1)55,。
10、第 2 章 一元二次方程2.1 一元二次方程A 练就好基础 基础达标1下列方程中,属于一元二次方程的是( C )A2x10 By 2x1Cx 2 10 D. x 211x2方程(m2)x 23mx 1 0 是关于 x 的一元二次方程,则( D )Am2 Bm2Cm2 Dm2 3把一元二次方程(x2)( x3) 4 化成一般形式,得( C )Ax 2x100 Bx 2x64Cx 2 x100 Dx 2x604将方程 3x216x 化为一元二次方程的一般形式,其中二次项系数为 3,则一次项系数、常数项分别是( A )A6,1 B6,1C6,1 D6,15下列关于一元二次方程 x23x1 的各项系数的说法不正确的是( C )A二次项系数为 1 B一次项系数为3C常数项为1 D一次项为3x6。
11、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.2 一元二次方程的解法(3),配方法解二次项系数为1的一元二次方程的基本步骤:,(1)移项:把常数项移到方程的右边; (2)配方:方程两边同时加上一次项系数一半的平方; (3)开方:根据平方根的意义,方程两边开平方; (4)求解:解一元一次方程; (5)定解:写出原方程的解.,课前回顾,情境引入,你能用配方法解一元二次方程的一般式吗?,(1)移项;(2)配方;(3)开方;(4)求解;(5)定解.,步骤依旧如下:,移项,得,配方,得,即,探究1,解得,一元二次方程的求根公式,(a0, b2-4ac0),开。
12、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.2 一元二次方程的解法(1),一元二次方程有什么特点?,整式方程 未知数的个数是1 含有未知数的项的最高次数是2,含有一个未知数,并且所含未知数的项的次数都为2的方程。,什么是一元二次方程?,课前回顾,ax2+bx+c=0 (a,b,c为常数,a0),一元二次方程的一般形式:,a,b,c分别叫做二次项系数、一次项系数和常数项.,课前回顾,还记得下面这一问题吗?,我们列出的一元二次方程为,情境导入,把面积为4的一张纸分割成如图的正方形和长方形两部分,求正方形的边长。,设正方。
13、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.2 一元二次方程的解法(2),(1)提取公因式法 (2)公式法: a2b2=(a+b) (ab) a22ab+b2=(ab)2 (3)十字相乘法,因式分解的主要方法:,课前回顾,x2+(a+b)x+ab=(x+a)(x+b).,根据若AB=0,则A=0或B=0,将解一元二次方程转化为解两个一元一次方程。,将方程的左边分解因式;,若方程的右边不是0,先移项,使方程的右边为0;,因式分解法解方程的基本步骤:,课前回顾,情境引入,如图,师傅为了修房顶,把一架梯子搁在墙上,AB长5米,AC是BC的2倍,问:AC为多少?,梯子、墙壁、地面构。
14、2.2 一元二次方程的解法(4),一除、二移、三配、四开、五解.,“配方法”解方程的基本步骤:,4、利用开平方法把原方程化成两个一元一次方程;,3、把方程的左边配成一个完全平方式;,2、把常数项移到方程的右边;,1、把二次项系数化为1(方程的两边同时除以二次项系数a),温故知新,5、解一元一次方程,求出方程的两个解。,温故知新,用配方法解下列一元二次方程,你能用配方法解一般形式的一元二次方程ax2+bx+c=0(a0)吗?,探索新知,用配方法解一般形式的一元二次方程,移项,得,配方,得,即,思考,此类方程一定有实数根么?,必须符合什么条件?,即,。
15、2.2 一元二次方程的解法(3),1、一元二次方程的一般形式:,常数项,二次项, 二次项系数,一次项, 一次项系数,复习回顾,(2)开平方法,(3)配方法,(1)因式分解法,2、一元二次方程的解法:,一般地,对于形如:其中 a,b 是非负数, 这样的一元二次方程,可用开平方法 直接得出它的两个解或者将它转化为两个一元一次方程进行求解.,开平方法解一元二次方程:,移项:把常数项移到方程的右边;,求解:解一元一次方程;,开方:根据平方根意义,方程两边开平方;,配方法解一元二次方程的基本步骤:,配方:方程两边都加上一次项系数一半的平方;,例6、用配方。
16、2.2 一元二次方程的解法(3)A 练就好基础 基础达标1用配方法解方程 2x24x 30,配方正确的是( D )A2x 24x434B2x 2 4x434Cx 2 2x1 132Dx 22x1 1322把方程 2x24x 10 化为(xm) 2 的形式,则 m 的值是( B )32A2 B1 C 1 D23用配方法解方程 2x2x 10 时,配方结果正确的是( D )A. B. (x 12)2 34 (x 14)2 34C. D. (x 14)2 1716 (x 14)2 9164若 9x2ax4 是一个完全平方式,则 a 等于( C )A12 B12C12 或12 D6 或65把方程 2x212x 110 化为(xm) 2n 的形式,结果为_( x3) 2 _2926将下列各式配方:(1)4y212y_9_(2 y_3_) 2;(2)2x210x2(x_ _)2。
17、2.2 一元二次方程的解法(1)A 练就好基础 基础达标1一元二次方程 x(x2)0 的根是( D )Ax0 Bx 2Cx 1 1,x 22 Dx 10 ,x 222方程 x24x40 的解是( C )Ax4 Bx 4Cx 1 x22 Dx 12,x 223方程(x1) 2x 1 的正确解法是( B )A化为 x11B化为(x1)(x11) 0C化为 x23 x20D化为 x104已知(x1)(x4)x 23x4,则方程 x23x40 的两根是 ( B )Ax 11,x 24 Bx 11,x 24Cx 1 1,x 24 Dx 11 ,x 245一个分式 的值为 0,则 x 的值为( A )x2 1x 1A1 B1C1 D06一元二次方程(x1) 23(x1)的解是( D )Ax0 Bx 10,x 2 1Cx 2 Dx 11,x 2 27若。
18、2.2 一元二次方程的解法(4)A 练就好基础 基础达标1方程 x22x20 的根的情况是( C )A有两个相等实数根B无实数根C有两个不相等的实数根D无法确定 2下列一元二次方程中,无实数根的方程是( B )Ax 23x10 B(2x1) 210Cx 2 2x10 Dx (x 1)33如果一元二次方程 ax2bxc 0( a0)能用公式法求解,那么必须满足的条件是( A )Ab 24ac0 Bb 24ac0Cb 24ac0 Db 24ac04一元二次方程 x2x 10 的两个实数根中较大的根是( B )A1 B.51 52C. D.1 52 1 525已知关于 x 的一元二次方程 mx22x10 有两个不相等的实数根,则 m 的取值范围是( D )Am1 Bm1 Cm1 且 m0 Dm 1 且 m0。
19、2.2 一元二次方程的解法(2)A 练就好基础 基础达标1方程 x23 的根是( C )13A3 B3 C3 D12一元二次方程(x6) 216 可转化为两个一元一次方程,其中一个是 x64,则另一个是( D )Ax64 Bx 64Cx 64 Dx 643用配方法解下列方程,其中应在左右两边同时加上 4 的是( D )Ax 22x5 Bx 28x4Cx 2 2x5 D. x24x34用配方法解一元二次方程 x24x5 的过程中,配方正确的是( D )A(x 2)21 B(x2) 21C(x2) 29 D(x2) 295方程(x1) 22 的根是( C )A1 或 3 B1 或3C1 或 1 D. 1 或 12 2 2 26把方程 x24x 30 化为(xm) 2n 的形式,则 m,n 的值分别为( C )A2,1 B1,2C2,1 D2。