1.3 平行线的判定(2),有一块木板,如何判断它的上下边缘是否平行?,有一块木板,如何判断它的上下边缘是否平行?,如图,直线AB,CD被直线EF所截,如果2=3,能得出ABCD吗?,2=3(已知)1=3(对顶角相等), 1=2, ABCD(同位角相等,两直线平行),两条直线被第三条直线所截,如果内
浙教版七年级数学下册 3.7整式的除法ppt课件3Tag内容描述:
1、1.3 平行线的判定(2),有一块木板,如何判断它的上下边缘是否平行?,有一块木板,如何判断它的上下边缘是否平行?,如图,直线AB,CD被直线EF所截,如果2=3,能得出ABCD吗?,2=3(已知)1=3(对顶角相等), 1=2, ABCD(同位角相等,两直线平行),两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.,2=3(已知) ABCD (内错角相等,两直线平行),几何语言:,简单地说 内错角相等,两直线平行,如图,直线AB,CD被直线EF所截, 如果2+3=180, 那么ABCD吗?, 2+3=180 (已知)1+3=180(邻补角的定义), 1=2(同角的补角相等), ABCD(同位。
2、3.2单项式的乘法,一位旅行者用步长测量天安门广场的面积:他从南走到北,记下所走的步数为1100步;再从东走到西,记下所走的步数为625步,然后根据自己的步长来估算广场的面积。,(1)如果该旅行者的步长用a米表示,你能用含a的代数式表示广场的面积吗?,(2)假设这位旅行者的步长为0.8米,那么广场的面积大约是多少?,(3)通过解决上述问题,你认为两个单项式相乘应怎样运算?运算的依据是什么?,1100a625a,11000.86250.8,一:合并下列各项,=3 a b 4a c,=(3 4) (a a) b c,=12a2bc,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其。
3、3.2 可能性的大小,明天的成功源自今天的积累,如果让你和姚明比赛定点投篮,谁赢的可能性大?,1、有一批成品西装,经质量检验,正品率达到98%,从这批西装中任意抽出1件,是正品的可能性大,还是次品的可能性大?,2、任意抛一枚均匀的硬币,出现正面朝上,反面朝上的可能性相等吗?,3、一个游戏转盘如图所示,红、黄、蓝、绿四个扇形的圆心角度数分别是90,60,90,120。让转盘自由转动,当转盘停止转动后,指针落在哪个区域的可能性最大?落在哪个区域的可能性最小?有可能性相等的情况吗?为什么?,某路口红绿灯的时间设置为:红灯40秒,绿灯60秒。
4、数据会说话 ,报道一:某网站调查显示,喜羊羊和美羊羊最受欢迎。,报道二: 某网站统计,共有14万小朋友参与投票。调查显示,喜羊羊和美羊羊最受欢迎。以下是网友对羊羊们喜爱情况的具体数据统计:,6.1数据的收集与整理,走进数据的世界 ,你记下三角形、长方形、圆、五角星出现的次数了吗?,记忆大过关,你记下三角形、长方形、圆、五角星出现的次数了吗?,再看一次,请将你们收集得到的数据填入下面表格中:,你知道表格中的数据是通过什么方法收集得到的?,6,7,5,方法: 数数,观察并记录,5,正,正,例如,学校里自行车的数量;,每个学期我们学。
5、第第 3 章整式的乘除期末综合能力达标训练章整式的乘除期末综合能力达标训练 2(附答案)(附答案) 1下列运算正确的是( ) Ax5x3x2 B (a)2 (a)3a5 C (2a2)36a6 D3a32a2a 2代数式 49m2+km+1 是一个完全平方式,则常数 k 的值为( ) A7 B7 C14 D14 3已知 a(0.2)0,b2 1,c( ) 2,比较 a,b,c 的大小( ) Aab。
6、5.4分式的加减(1),你能找到它们的好朋友吗?,2,游 戏 1:,想一想,同分母分数如何加减?,同分母分数相加减,分母不变,把分子相加减。,在一次扶贫帮困献爱心活动中,某校学生共捐得爱心款13363元,其中七(1)班同学捐了260元,七(2)班同学捐了220元,若这两个班的人数都是a人,则七(1)班同学平均每人比七(2)班多捐多少元?,这是关于分式的加减问题,应该如何计算?,算一算,同分母分数相加减的法则:,同分母的分数相加减 ,把分子相加减,分母不变.,分式,分式,想一想:你还能找到它们的好朋友吗?,游 戏 2:,猜测与探索,你认为 + 应该等于什么?,a,a,。
7、,5.4分式的加减(2),同分母的分式相加减,分母不变,分子相加减.,【同分母分式加减法的法则】,(1) 计算:,(2)计算:,2、你认为异分母的分式应该如何加减?,1、异分母的分数如何加减?,先通分,把异分母分数化为同分母的分数, 然后再按同分母分数的 加减法法则进行计算。,先通分,把异分母分式化为同分母的分式, 然后再按同分母分式的 加减法法则进行计算。,把异分母的分式可化为同分母的分式 的过程叫做 通分 .,异分母的分数相加减法则,同分母的分式相加减法则,小明认为, 只要所异分母的分式化成同分母的分式, 异分母的分式的问题就变成。
8、第 3 章 整式的乘除检测卷一、选择题(每小题 3 分,共 30 分)1. (黄石中考)下列计算中,结果是 a7 的是( )A a3-a4 B a3a4 C a3+a4 D a3a42 空气的密度(单位体积内空气的质量)是 0.00129g/cm3,用科学记数法表示 0.00129为( )A 1.2910-3 B 0.12910-3C 0.12910-2 D 1.2910-23 下列各式可以用平方差公式计算的是( )A (-a+4c) (a-4c) B (x-2y) (2x+y)C (-3a-1 ) (1-3a ) D (-0.5x-y ) (0.5x+y )4. 计算(-x 3) 2(x 2) 3 所得的结果是( )A. x10 B. -x10 C. x12 D. -x125。
9、5.3分式的乘除,情景导入,火车提速后,平均速度提高到原来的x倍,那么行使同样的路程,时间可缩短到原来的几分之几?,火车提速后的时间,火车提速前的时间,那么行使同样的路程,时间可缩短到原来的,解:设火车提速前的速度为v,行使的路程为s,1. 观察下列运算,你想到了什么?,2.猜一猜下面的式子怎么运算,与同伴交流你的想法.,两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母; 两个分式相除,把除式的分子分母颠倒位置后,再与被除式相乘.,例1. 计算:,你是否悟到了怎么去做此类分式的乘除法运算?,分子和分母都是单项式的。
10、1.5 图形的平移,看看想想:,问题:在滑梯过程中,小朋友身体各部分运动的方向相同吗?运动距离呢?,合作学习,观察左图,缆车由A到B的运动中,它的各部分运动的方向相同吗?各部分运动的距离怎样变化?,A,B,相等,(1)想一想 填一填 在传送带上,如果货物箱上的A点向左移动50cm , 则箱子上的B点会向 移动,移动了 cm,左,50,问:传送带在传送箱子的过程中,箱子上的各点运动的方向如何?运动距离呢?,. D,. D,.C,.C,箱子上的C点会向 移动,移动了 cm,则箱子上其他所有的点会向 移动,移动了 cm.,箱子上的D点运动方向,运动距离呢?,左,50,左,5。
11、3.3多项式的乘法,解:如上图:有3种拼法,长宽分别为,可得到等式,1、单项式与单项式相乘的法则?,2x2(-4xy)= (-2x2)(-3xy2)= (-9a2 b3)(8ab2) = 12( + )=,-72a3 b5,9,单项式与单项式相乘,只要将它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.,-8x3y,6x3y2,单项式与多项式相乘的法则:,2: 单项式与多项式相乘,就是用单项式去乘再把所得的积相加,多项式的每一项,人们越来越重视厨房的设计,不少家庭的厨房会沿墙做一排矮柜,使厨房的空间得到充分的利用,而且便于清理.下图是一间厨房的平面布局,我们有哪几种方法。
12、3.2单项式的乘法,由数与字母或字母与字母相乘组成的代数式叫单项式。,判断下列式子是否单项式?,(1) 5xy,(2) 2x+3y,(4) -7abc,(6) 2xy,上面的(1)式加上(6)式是多项式还是单项式?,那么(1)式乘以(6)式呢?,5xy 2xy =,5xy2xy,= 52xxyy,= 10xy,例:3ab(-2abc),=-6abc,探索路线:,=3a b (-2) a b c,=3 (-2) a a b b c,单项式与单项式相乘,把他们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。,我。
13、3.6同底数幂的除法(1),探究一下,你能计算下列两个问题吗?(填空),2,2,2,2,2,2,2,2,2,5-3,a,1,3-2,a,a,a,a,am-n,(4)能不能证明你的结论呢?,(mn)个a,m个a,n个a,同底数幂相除,底数不变,指数相减 即,同底数幂的除法法则:,条件:除法 同底数幂 结果:底数不变 指数相减,猜想:,注意:,(5)讨论为什么a0?m、n都是正整数,且mn ?,归纳法则,一般地,同底数幂相除的法则是:同底数幂相除,底数不变,指数相减。,(a0,m,n都是 正整数,且mn),热身,(1) a9a3,=a9-3 = a6,(2) 21227,=212-7=25=32,(3) (- x)4(- x),=(- x)4-1=(- x)3= - x3,=(- 3)1。
14、3.6同底数幂的除法(2),知识回顾,3.计算:,(1) 279973(2) b2mbm-1(m是大于1的整数)(3) (-mn)9(mn)4(4) (a-b)6(b-a)3(a-b)2,2.aman= (a0, m、n都是正整数,且mn),1.同底数幂相除,底数_, 指数_.,不变,amn,4.已知am=3,an=2,求a2m-3n的值.,相减,(1) 5353=_,(3) a2a5=,1,合作学习,1,a( ),(2) 3335= = =,35,33,( ),1,1,3( ),33,2,3,讨论下列问题:,若5353也能适用同底数幂的除法法则,你认为5353= 应当规定50等于多少,(2) 任何数的零次幂都等于1吗?,(1) 5353 =_,=50,53-3,50,a0=1 ?,=1,任何不等于零的数。
15、3.5 整式的化简,复习引入,(am)n=,amn,(ab)n=,anbn,如图,点M是AB的中点,点P在MB上,分 别以AP,PB为边,作正方形APCD和正方 形PBEF.设AB=4a,MP=b,正方形APCD 与正方形PBEF的面积之差为S.,合作学习,(2)用a,b的代数式表示S;,(3)当a=4,b=0.5时,S的值是多少?怎样计算才比较简便?,(1)用a,b的代数式表示AP,BP,当a=4,b=0.5时,整式的化简应遵循先乘方、再乘、 最后算加减的顺序。,整式化简的运算顺序:,能运用乘法公式的则运用公式。,例1、化简 (1)(2x1)(2x1)(4x3)(x6) (2)(2a3b)24a(a3b1),解:(1)原式=,=4x2 1 ,=4x2 1 (4x2。
16、3.7 整式的除法知识点 1 单项式除以单项式单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式1计算:(1) (3x2y);(35x2y3)(2)(10a4b3c2)(5a3bc);(3)(2ab) 4(2ab) 2.知识点 2 多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加即(abc)mambmcm(m0)2计算:(1)(6ab8b)(2b);(2)(21m328m 235m)(7m);探究 一 整式的乘除法的混合运算计算:(1) 5a 2b (2ab2);(13ab)(2)x(34x)2x 2(x1)(2x)归纳总结 (1)对于单项式乘除的混合运算应注意。
17、3.7 整式的除法,1.用字母表示幂的运算性质:,2计算:,顾回前课,1. 已知 |a|2,且 则,2. 计算:,用科学记数法表示340000=_,0.0000035=_,“阿波罗11”号 宇航员在月球上,月球是距离地球最近的天体,它与地球的平均距 离约为 米。如果宇宙飞船以 米/秒的速度飞行,到达月球大约需要多少时间?,考考你,考考你,月球是距离地球最近的天体,它与地球的平均距 离约为 米。如果宇宙飞船以 米/秒的速度飞行,到达月球大约需要多少时间?,探究尝试,单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数。
18、3.7整式的除法,合作学习,月球是距离地球最近的天体,它与 地球的平均距离约为3.8108米, 如果宇宙飞船以1.12104米/秒的 速度飞行,到达月球大约需要多少 时间?,(3.8108)(1.12104),由此,你能找到计算(8a8)(2a4)的方法吗?,计算(6a3b4)(3a2b)呢?,请计算(14a3b2c)(4ab2),解:(8a8) (2a4),=(82)(a8a4),=4a4,解:(6a3b4)(3a2b),=(63)(a3a2)(b4b),=2ab3,解:原式=(144)a3-1b2-2c,= a2c,单项式除以单项式的法则,单项式相除,把系数、同底 数幂相除,作为商的因式, 对于只在被除式里含有的字 母,则连同它的指数作。
19、3.7整式的除法,1.用字母表示幂的运算性质:,2计算:,温故知新:,“阿波罗11”号 宇航员在月球上,月球是距离地球最近的天体,它与地球的平均距 离约为 米。如果宇宙飞船以 米/秒的速度飞行,到达月球大约需要多少时间?,合作学习:,月球是距离地球最近的天体,它与地球的平均距 离约为 米。如果宇宙飞船以 米/秒的速度飞行,到达月球大约需要多少时间?,合作学习:,探究尝试,仔细观察一下,并分析与思考下列几点:,(被除式的系数) (除式的系数),写在商里面作因式。,(被除式的指数) (除式的指数),商式的系数,单项式除以单项式,其结果(商式)。
20、3.7整式的除法,合作学习:,月球是距离地球最近的天体,它与地球的平均距 离约为 米。如果宇宙飞船以 米/秒的速度飞行,到达月球大约需要多少时间?,合作学习:,单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。,例1:计算:,练一练:计算,练一练:填空,做一做:,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。,例2:计算,练一练:计算,练一练:填空,体会.分享,说能出你这节课的收获和体验让大家与你分享吗?,。