1.3 二次根式的运算(1)A 练就好基础 基础达标1化简 的结果是( A )545A2 B. C. D.25 2 252下列二次根式中,属于最简二次根式的是( A )A. B. C. D.3 12 18 543下列计算中正确的是( C )A2 3 6 B(5 )2255 5 5 5C. 4 D3
浙教版数学八年级下册1.1二次根式ppt课件2Tag内容描述:
1、1.3 二次根式的运算(1)A 练就好基础 基础达标1化简 的结果是( A )545A2 B. C. D.25 2 252下列二次根式中,属于最简二次根式的是( A )A. B. C. D.3 12 18 543下列计算中正确的是( C )A2 3 6 B(5 )2255 5 5 5C. 4 D3 2 612 8 6 2 3 54下列计算中错误的是( C )A. 7 B. 14 7 2 60 30 2C. 9 D. 3 6 282a 2aa5已知 a, b,则 等于( C ) 7 70 10Aab BbaC. Dabba6下列把有理数与二次根式的乘积化成一个二次根式,其中正确的有_(填序号)9 ;5 325 454 ;3 423 163 483 ;2 .2 32 2 92 18。
2、1.3 二次根式的运算(3)A 练就好基础 基础达标1若直角三角形一锐角为 30,则它的三边之比可能是( B )A123B12 3C1 2 3D11 22河堤横断面如图所示,堤高 BC5 m ,迎水坡 AB 的坡比是 1 ,则 AC 的长是( A )3A5 m B10 m 3C15 m D20 m3一块正方形的瓷砖,面积为 50 cm2,它的边长大约在( D )A45 cm 之间 B56 cm 之间C67 cm 之间 D78 cm 之间4如图所示,小正方形边长为 1,连结小正方形的三个顶点可得ABC,则 AC 边上高的长是( C )A. B.322 3105C. D.355 45552018枣庄我国南宋著名数学家秦九韶在他的著作 数书九章一书中,给出了著名的秦九韶公式。
3、12.1 二次根式(2),八年级(下册),作 者:蔡宏(),初中数学,复习回顾:,1二次根式的概念;,2二次根式有意义的条件;,3,12.1 二次根式(2),观察下列各式的特点,找出各式的共同规律,并用表达式表示你发现的规律.,通过观察,你得到的结论是什么? 试着说一说,12.1 二次根式(2),根据绝对值的意义:,12.1 二次根式(2),例题讲解,(1),(2),(3),12.1 二次根式(2),学生练习:,计算:,(1),(2),(3),(4),12.1 二次根式(2),2.指出下列运算过程中的错误,,可以写成,两边开平方得,,所以,即,12.1 二次根式(2),拓展提高:,12.1。
4、数学欣赏数学欣赏 20202020年八年级下学期上课资料年八年级下学期上课资料 二次根式的乘除二次根式的乘除(2 2) 淮安市启明外国语学校 反过来得反过来得 二次根式的乘法运算法则二次根式的乘法运算法则: (a(a 0 0,b b 0).0). abab (a(a 0 0,b b 0).0). abab 课前回顾课前回顾 尝试化简尝试化简: 注意结果。
5、1.3 二次根式的运算(2)A 练就好基础 基础达标1计算 3 2 的结果是( A )5 5A. B25 5C3 D652计算 的结果是( B )12 3A3 B. 3C2 D33 33已知二次根式 与 可以合并成一项,则 a 的取值不可能是( D )a 2A. B212C8 D124计算 3 的结果是( C )2 18A3 B 520 2C6 D42 205已知 a ,b ,则 a 与 b 的关系是( C )12 1 12 1A相等 B互为相反数C互为倒数 D平方值相等6计算 的结果是 ( C )27 823A. B.3433C. D2533 37下列各式计算正确的是( D )A3 2 1 B. 12 2 2 3C. D. 77 2 5 72 2 28下列二次根式,不能与 合并的有_(填写序号即可)12 ; ; ; ; .48 125113 。
6、1.2 二次根式的性质(2)A 练就好基础 基础达标1下列式子中,属于最简二次根式的是( B )A. B.4 11C. D.18152化简 的结果是( B )40A20 B2 10C2 D45 103若直角三角形的两条直角边长分别为 cm 和 cm,那么此直角三角形的斜边长是( 13 14B )A3 cm B3 cm2 3C9 cm D27 cm4计算 的结果是( B )( 5)23A5 B 53 3C5 D3035若 ( )2,则 x 的取值范围是( B )( x 5)2 5 xAx5 Bx5Cx 5 Dx 56下列式子中,错误的是( B )A. 42 8B. ( 4)( 9) 4 9C. 43 233D. 2 4925 4 925 35 657化简: _3 _, _2 _,18 2 20 5 _2 _, _。
7、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第1章 二次根式 1.2 二次根式的性质,在实数范围内,负数没有平方根.,下列各式是二次根式吗? .,回顾旧知、掌握新知,表示一些正数的算术平方根,a叫被开方数,,回顾旧知、掌握新知,2.a可以是数,也可以是式.,4.a0, 0 .,3.形式上含有二次根号 .,5.既可表示开方运算,也可表示运算的结果.,1.表示a的算术平方根.,( 双重非负性),回顾旧知、掌握新知,请比较左右两边的式子,想一想: 1、 与 有什么关系? 2、当 时, 当 时,一般地,二次根式有下面的性质:,2,2,5,5,0,0,探索一:,|a|,0,2,2,3,3,探索二。
8、1.3,二次根式的运算(3),如图,架在消防车上的云梯AB长为15m, AD:BD=1 :0.6,云梯底 部离地面的距离BC为2m。 你能求出云梯的顶端离地 面的距离AE吗?,节前问题:,A,D,E,B,C,在日常生活和生产实际中,我们在解决一些问题,尤其是涉及直角三角形的边长计算的问题时,经常用到二次根式及其运算。,在ABC中,C=Rt,记AB=c,BC=a,AC=b。 (1)若a:c= ,求b:c.,(2)若 求b。,做一做,例6: 如图,扶梯AB的坡比(BE与AE的长度之比)为1:0.8,滑梯CD的坡比为1:1.6,AE= 米,BC= CD。一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少。
9、,1.2 二次根式的性质(1),合作学习:,已知下列各正方形的面积,求其边长.学.科.网zxxk.组卷网,你能猜想,= ;,= ;,试一试:,3,= ;,31,一般地,二次根式有下面的性质:学.科.网zxxk.,2.3,5,3,口答:,请比较左右两边的式子, 议一议: 与 有什么关系?,3,3,5,5,0,0,填空:,大家抢答,比一比:,比较分析 和,先开方,后平方,先平方,后开方,a0,a取全体实数,a,a学.科.网,根号a的平方,根号下a平方,讲解例题,练一练:,计算:,练一练:,数 在数轴上的位置如图,则,0,1,讲解例题,练习,练一练:,1、判断题,A,3.实数a、b、c在数轴上的位置如图所示,化简,练一练:,。
10、1.3二次根式的运算(1),二次根式的性质:,(a0),(1),(2),a,-a,当a0时,= ;当a0时,= 。,|a|,a,二次根式的性质:,(3),(4),(a 0 , b0),(a 0 , b0),二次根式有下面运算的性质,(a 0 , b0),(a 0 , b0),你能用二次根式上面运算的性质来计算吗?,例1:计算,注意: 不能写成,例2: 一个正三角形路标如图。 若它的边长为 个单位, 求这个路标的面积。,A,B,C,D,如图,架在消防车上的云梯AB长为15m, AD:BD=1 :0.6,云梯底 部离地面的距离BC为2m。 你能求出云梯的顶端离地 面的距离AE吗?,引申与提高:,A,D,E,B,C,小结,二次。
11、1.3 二次根式的运算(3),斜坡的竖直高度和对应的水平宽度的比叫做坡比学.科.网zxxk.组卷网,1、一辆汽车从一道斜坡上开过,已知斜坡的坡比为1:10,AC=20m,求斜坡的长.,问题情景,(1)、一道斜坡的坡比为1:3,已知AC=6米,则斜坡AB的长为 ;,6米,补充练习,2、一名自行车极限运动爱好者准备从点A处骑到点B处。(如图),若斜坡AB的坡比为1:1,AE=2米,该爱好者从点A处骑到点B处后升高了多少米?他通过的路程是多少米?学.科.网zxxk,问题情景,在日常生活和生产实际中,我们在解决一些问题,尤其是涉及直角三角形的边长计算的问题时,经常用到二。
12、,a,9,4,16,15,17,参考右图,完成以下填空:,2,7,一般地,二次根式有下面的性质:,性质一:,3,5,大家抢答,性质二:,填空:,请比较左右两边的式子,议一议: 与 有什么关系?当 时, ;当 时,一般地,二次根式有下面的性质:,2,2,5,5,0,0,相等,(7) 数 在数轴上的位置如图,则,(8)如图, 是直角坐标系中一点,求点P到原点的距离.,例1计算:,例2 计算:,1.计算下列各题:,(1),(2),试一试,小结,二次根式的性质及它们的应用:,(1)(2),2,2,2,。
13、1.3二次根式的运算(1),二次根式的性质:,(a0),(1),(2),a,-a,(a0)(a0),|a|=,a,二次根式的性质:,(3),(4),(a 0 , b0)学.科.网zxxk.组卷网,(a 0 , b0),回顾:,你会计算吗? (1) (2),积和商的二次根式的性质:,反过来:,二次根式乘除运算法则,二次根式的乘法运算法则是什么?用文字语言怎么表达?对于运算的结果有什么要求?,二次根式相乘:被开方数相乘, 根指数不变;,尽量化简。学.科.网zxxk.,(1),(2),归纳1,二次根式的除法运算法则用文字语言怎么表达?对于运算的结果有什么要求?,二次根式相除:被开方数相除,根。
14、,.二次根式的运算(二),复习: 二次根式计算、化简的结果要求 符合什么?,(1)被开方数不含分母,分母不含根号; (2)被开方数中不含能开得尽方的因数 或因式.,热身运动,.计算:,a,0,(),(),(),(),以前我们学过的整式运算法则和方法也适用于二次根式的运算,例如:类似于同类项,我们可以把相同二次根式的项合并,.下列二次根式中,可与 合并的 二次根式是( ),.下列各式中,计算正确的是( ),以下问题你能用同样的方法计算吗?,下列计算哪些正确,哪些不正确?,(不正确),(不正确),(不正确),(正确),(不正确),彗眼识。
15、,1.2二次根式的性质(2),二次根式有哪些性质?,口诀:二次根式的平方等于被开方数学.科.网zxxk.组卷网,10,10,10,做一做学.科.网zxxk.,做一做,一般地,二次根式有下面的性质:,慧眼识真!,思考:,例1 化简,(1),(2),(3),解:,=,=,12,(1),15,=,180,(3),=,=,=,3,(2),=,=,5,例2 化简,;,(1),(2),解:,(1),=,=,(2),=,=,=,二次根式化简的要求:,1.根号内不再含有开得尽方的因式,2.根号内不再含有分母,练一练1:化简:,例4:先化简,再求出各算式的近似值(精确到0.01),合理应用二次根式的性质,可以简化实数的运算!,练习2,先化简,再求出。
16、第 1 章 二次根式1.1 二次根式A 练就好基础 基础达标1下列代数式能作为二次根式的被开方数的是( C )A3 Ba(a0)Ca 21 D(x 2) 2(x2)2二次根式 中字母 a 的取值范围是( B )a 3Aa3 Ba3Ca3 Da33使 有意义的 x 的取值范围是 ( A )1x 1Ax1 Bx 1Cx 1 Dx 14下列四个式子中,x 的取值范围为 x2 的是( C )A. B.1x 2 1x 2C. D.x 2 2 x5若代数式 在实数范围内有意义,则 x 的取值范围是( C )1x2Ax0 Bx0Cx 0 Dx 为任意实数6二次根式 (a0)是( D )aA正数 B负数C0 D非负数7已知一个直角三角形两条直角边的长分别是 a 和 3,则斜边长是_ _;已知一个a2 9圆的。
17、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第1章 二次根式 1.1 二次根式,第1章 二次根式 1.1 二次根式,1、如果x2=3,那么x=_ .,课前回顾,2、16的平方根是_ . 16的算术平方根是_.,3、7有没有平方根?有没有算术平方根?,正数和0都有算术平方根和平方根;负数既没有算术平方根,也没有平方根.,课前回顾, 正数有两个平方根且互为相反数; 0有一个平方根就是0; 负数没有平方根.,平方根的性质:,根据下图的直角三角形、正方形和等边三角形的条件,完成以下填空:,直角三角形的边长是 .,情境导入,(b 3)cm,正方形的边长是,探究1,S,。
18、1.1二次根式,(1) 3的算术平方根是,(2) 有意义吗?为什么?,(3) 一个非负数a的算术平方根应表示为,根据下图所示的直角三角形、正方形和等边三角形的条件,完成以下填空:,(b 3)cm,直角三角形的边长是: 。 正方形的边长是: 。 等腰直角三角形的的直角边长是: 。,你认为所得的各代数式的共同特点是什么?,S,各代数式的共同特点:,1。表示的是算术平方根,2。根号内含有字母的代数式,为了方便起见,我们把一个数的算术平方根也叫二次根式。,像 这样表示的是算术平方根,且根号内含有字母的代数式叫二次根式。,例如: 也叫二次根式。。
19、(2) 3的算术平方根是,(3) 有意义吗?为什么?,(4) 一个非负数a的算术平方根应表示为,(1) 3的平方根是_,,表示_,3的算术平方根,50米,a米,塔座所形成的这个直角三角形的 斜边长为_米。,塔座,?米,下球体,S,圆形的下球体在平面图上的面积为S,则半径为_.,b-3,各代数式表示的意义是什么?,都表示算术平方根,1.1 二次根式,定义:像 , , , 这样表示算术平方根的代数式叫做二次根式。,被开方数大于或等于零,判断,下列各式中哪些是二次根式?,火眼金睛,是,不是,是,是,不是,总结:判断代数式是否是二次根式的依据,1、形式上有二次根号,2、。
20、1.1 二次根式学.科.网zxxk.组卷网, 正数有两个平方根且互为相反数; 0有一个平方根就是0; 负数没有平方根。,1、平方根的性质:,2.试一试 :说出下列各式的意义;,观察:,上面几个式子中,被开方数的特点?,被开方数是非负数,3、 (a0)表示什么?,表示非负数a的算术平方根学.科.网zxxk.,根据下图所示的直角三角形、正方形和等腰直角三角形的条件,完成以下填空:,(b 3)cm,直角三角形的斜边长是: 。 正方形的边长是: 。 等腰直角三角形的直角边长是: 。,你认为所得的各代数式的共同特点是什么?,各代数式的共同特点:,1。表示的是算。