第一章三角函数1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象1.4.2正弦函数、余弦函数的性质一、正弦函数的图象1正弦函数、余弦函数实数4.3单位圆与正弦函数、余弦函数的基本性质学习目标1.会利用单位圆研究正弦、余弦函数的基本性质.2.能利用正弦、余弦函数的基本性质解决相关的问题知识点
正弦型函数Tag内容描述:
1、1.3.1正弦函数的图象与性质(三)学习目标1.掌握ysin x的最大值与最小值,并会求简单三角函数的值域和最值.2.掌握ysin x的单调性,并能利用单调性比较大小.3.会求函数yAsin(x)的单调区间.知识点一正弦函数的定义域、值域观察下图中的正弦曲线.正弦曲线:可得如下性质:由正弦曲线很容易看出正弦函数的定义域是实数集R,值域是1,1.对于正弦函数ysin x,xR有:当且仅当x2k,kZ时,取得最大值1;当且仅当x2k,kZ时,取得最小值1.知识点二正弦函数的单调性正弦函数ysin x的图象与性质解析式ysin x图象值域1,1单调性在,kZ上递增,在,kZ上递减最。
2、1.3.1正弦函数的图象与性质(二)学习目标1.了解周期函数、周期、最小正周期的定义.2.会求函数yAsin(x)的周期.3.掌握函数ysin x的奇偶性,会判断简单三角函数的奇偶性.知识点一函数的周期性(1)对于函数f(x),如果存在一个非零常数T,使得定义域内的每一个x值,都满足f(xT)f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.(2)对于一个周期函数f(x),如果在它的所有周期中存在一个最小的正数,那么这个最小正数就叫做它的最小正周期.知识点二正弦函数的周期性由sin(x2k)sin x(kZ)知,ysin x是周期函数,2k(kZ且k0)是它的周期。
3、1.3三角函数的图象与性质1.3.1正弦函数的图象与性质(一)学习目标1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线的步骤和方法,能用“五点法”作出简单的正弦曲线.知识点一几何法作正弦曲线(1)正弦函数ysin x,xR的图象叫做正弦曲线.(2)几何法作正弦函数ysin x,x0,2的操作流程.作直角坐标系,并以直角坐标系x轴上任一点为圆心(一般取y轴左侧)画单位圆,如图所示.从单位圆与x轴的交点起,把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x轴的垂线,可以得到对应于0,2的角的正弦线.找横坐。
4、5.2正弦函数的性质学习目标1.理解、掌握正弦函数的性质.2.会求简单函数的定义域、值域.3.能利用单调性比较三角函数值的大小知识点正弦函数的性质函数正弦函数ysin x,xR图像定义域R值域1,1周期性是周期函数,周期为2k(kZ,k0),2是它的最小正周期奇偶性奇函数,图像关于原点对称单调性在区间(kZ)上是增加的;在区间(kZ)上是减少的最值当x2k(kZ)时,ymax1;当x2k(kZ)时,ymin1对称轴xk,kZ对称中心(k,0),kZ1正弦函数在定义域上是单调函数()提示正弦函数不是定义域上的单调函数2已知yksin x1,xR,则y的最大值为k1.()3ysin|x|是偶函数()题。
5、5.2正弦函数的性质基础过关1函数ycos(xR)是()A奇函数B偶函数C非奇非偶函数D无法确定解析ycossin x.答案A2函数f(x)|sin x|的一个递增区间是()A.B.C. D.解析画出函数f(x)|sin x|的图像如图所示,由图像可知是函数f(x)|sin x|的一个递增区间答案C3设M和m分别是函数ysin x1的最大值和最小值,则Mm()A.BCD2解析M1,m1,Mm2.答案D4函数y的定义域是_,单调递减区间是_解析2sin x0,sin x0,2kx2k,kZ,即函数的定义域是2k,2k(kZ)y与ysin x的单调性相反,函数的单调递减区间为(kZ)答案2k,2k(kZ)(kZ)5设acos 29,bsin 144&。
6、5正弦函数的图像与性质51正弦函数的图像基础过关1函数ysin x,x的简图是()答案D2在同一平面直角坐标系内,函数ysin x,x0,2与ysin x,x2,4的图像()A重合B形状相同,位置不同C关于y轴对称D形状不同,位置不同解析根据正弦曲线的作法可知函数ysin x,x0,2与ysin x,x2,4的图像只是位置不同,形状相同答案B3y1sin x,x0,2的图像与直线y2的交点的个数是()A0B1C2D3解析由1sin x2,得sin x1,x0,2,只有当x时,sin x1.答案B4函数ysin x,x的图像与函数yx的图像交点个数是_解析在同一坐标系内画出图像答案15用五点法画ysin x,x0,2的简图时,所。
7、5.2正弦函数的性质一、选择题1函数f(x)12sin2x2sin x的最大值与最小值的和是()A2 B0 C D答案C解析f(x)12sin2x2sin x22,所以函数f(x)的最大值是,最小值是3,所以最大值与最小值的和是,故选C.2函数f(x)是()A奇函数B偶函数C既是奇函数又是偶函数D非奇非偶函数答案B解析函数f(x)的定义域为(,0)(0,),关于原点对称,且f(x)f(x),故f(x)为偶函数3下列关系式中正确的是()Asin 11cos 10sin 168Bsin 168sin 11cos 10Csin 11sin 168cos 10Dsin 168cos 10sin 11。
8、5正弦函数的图像与性质5.1正弦函数的图像一、选择题1以下对正弦函数ysin x的图像描述不正确的是()A在x2k,2(k1)(kZ)上的图像形状相同,只是位置不同B介于直线y1与直线y1之间C关于x轴对称D与y轴仅有一个交点考点正弦函数的图像题点正弦函数图像的应用答案C解析画出ysin x的图像(图略),根据图像可知A,B,D三项都正确2若函数ysin(x)的图像过点,则的值可以是()A. B. C D答案C解析将点代入ysin(x),可得k,kZ,所以k,kZ,只有选项C满足3函数y的图像是()答案C解析由y|sin x|易知该函数为偶函数,当sin x0时,ysin x,当sin x0时,ysin x,作。
9、5正弦函数的图像与性质5.1正弦函数的图像学习目标1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线的步骤和方法,能用“五点法”作出简单的正弦曲线知识点一几何法作正弦函数的图像利用正弦线,这种作图方法称为“几何法”,其基本步骤如下:作出单位圆:作直角坐标系,并在直角坐标系中y轴左侧的x轴上取一点O1,作出以O1为圆心的单位圆;等分单位圆,作正弦线:从O1与x轴的交点A起,把O1分成12等份过O1上各分点作x轴的垂线,得到对应于0,2等角的正弦线;找横坐标:把x轴上从0到2这一段分成12等份;找纵坐标:把。
10、14.2 正弦函数正弦函数、余弦函数的性质余弦函数的性质(二二) 一、选择题 1符合以下三个条件: 在 0, 2 上单调递减; 以 2 为周期; 是奇函数 这样的函数是( ) Aysin x Bysin x Cycos x Dycos x 考点 正弦、余弦函数性质的综合应用 题点 正弦、余弦函数性质的综合应用 答案 B 解析 在 0, 2 上单调递减,可以排除 A,是奇函数可以排除 C,D。
11、14.2 正弦函数正弦函数、余弦函数的性质余弦函数的性质(一一) 一、选择题 1下列是定义在 R 上的四个函数图象的一部分,其中不是周期函数的是( ) 考点 正弦、余弦函数的周期性 题点 正弦、余弦函数的周期性 答案 D 解析 对于 D,x(1,1)时的图象与其他区间图象不同,不是周期函数 2下列说法中正确的是( ) A当 x 2时,sin x 6 sin x,所以 6不是 f(x)si。
12、 1.4 三角函数的图象与性质三角函数的图象与性质 14.1 正弦函数正弦函数、余弦函数的图象余弦函数的图象 一、选择题 1以下对正弦函数 ysin x 的图象描述不正确的是( ) A在 x2k,2(k1)(kZ)上的图象形状相同,只是位置不同 B介于直线 y1 与直线 y1 之间 C关于 x 轴对称 D与 y 轴仅有一个交点 考点 正弦函数的图象 题点 正弦函数图象的应用 答案 C 解析 画。
13、 1.4 三角函数的图象与性质三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象正弦函数、余弦函数的图象 1用“五点法”作函数 y2sin x1 的图象时,首先应描出的五点的横坐标可以是 ( ) A0, 2, 3 2 ,2 B0, 4, 2, 3 4 , C0,2,3,4 D0, 6, 3, 2, 2 3 解析 由“五点法”可知选 A 答案 A 2方程 sin x x 10的根的个数。
14、1.4.2 正弦函数、余弦函数的性质正弦函数、余弦函数的性质(二二) 基础过关 1函数 ysin 2x 的单调减区间是( ) A 22k, 3 22k (kZ) B k 4,k 3 4 (kZ) C2k,32k (kZ) D k 4,k 4 (kZ) 解析 令 22k2x 3 2 2k,kZ, 得 4kx 3 4 k,kZ, 则 ysin 2x 的单减区间是 4k, 3 4 k(kZ) 答。
15、1.4.2 正弦函数、余弦函数的性质正弦函数、余弦函数的性质(一一) 基础过关 1函数 f(x)xsin x,xR( ) A是奇函数,但不是偶函数 B是偶函数,但不是奇函数 C既是奇函数,又是偶函数 D既不是奇函数,又不是偶函数 解析 由 f(x)xsin x(xsin x)f(x)可知 f(x)是奇函数 答案 A 2下列函数中,周期为 2 的是( ) Aysin x 2 Bysin 2x Cy|。
16、 1.4 三角函数的图象与性质三角函数的图象与性质 14.1 正弦函数正弦函数、余弦函数的图象余弦函数的图象 学习目标 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线 和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余 弦曲线之间的联系 知识点一 正弦函数、余弦函数的概念 实数集与角的集合之间可以建立一一对应关系, 而一个确定的角又。
17、14.2 正弦函数正弦函数、余弦函数的性质余弦函数的性质(二二) 学习目标 1.掌握 ysin x, ycos x 的最大值与最小值, 并会求简单三角函数的值域和最值. 2.掌握 ysin x,ycos x 的单调性,并能利用单调性比较大小.3.会求函数 yAsin(x)及 yAcos(x)的单调区间 知识点一 正弦、余弦函数的定义域、值域 观察下图中的正弦曲线和余弦曲线 正弦曲线: 余弦曲。
18、14.2 正弦函数正弦函数、余弦函数的性质余弦函数的性质(一一) 学习目标 1.了解周期函数、周期、最小正周期的定义.2.会求函数 yAsin(x)及 y Acos(x)的周期.3.掌握函数 ysin x, ycos x 的奇偶性, 会判断简单三角函数的奇偶性 知识点一 函数的周期性 1对于函数 f(x),如果存在一个非零常数 T,使得当 x 取定义域内的每一个值时,都有 f(x T)f(x)。
19、4.3单位圆与正弦函数、余弦函数的基本性质学习目标1.会利用单位圆研究正弦、余弦函数的基本性质.2.能利用正弦、余弦函数的基本性质解决相关的问题知识点正弦、余弦函数的性质正弦函数(ysin x)余弦函数(ycos x)定义域R值域1,1最小值当x2k,kZ时,ymin1当x2k,kZ时,ymin1最大值当x2k,kZ时,ymax1当x2k,kZ时,ymax1周期性周期函数,最小正周期为2单调性在区间,kZ上是增加的;在区间,kZ上是减少的在区间2k,2k,kZ上是减少的;在区间2k,22k,kZ上是增加的思考能否认为正弦函数在单位圆的右半圆是增加的?答案不能,右半圆可以表示无数个。
20、第一章 三角函数1.4 三角函数的图象与性质1.4.1 正弦函数、余弦函数的图象1.4.2 正弦函数、余弦函数的性质一、正弦函数的图象1正弦函数、余弦函数实数集与角的集合之间存在一一对应关系,而一个确定的角对应着唯一确定的正弦(或余弦)值这样,任意给定一个实数x,有唯一确定的值sin x(或cos x)与之对应由这个对应法则所确定的函数y=sin x(或y=cos x)叫做正弦函数(或余弦函数),其定义域是R 2利用正弦线作正弦函数的图象如图,在直角坐标系的x轴上取一点O1,以O1为圆心,单位长为半径作圆,从O1与x轴的交点A起,把O1分成12等份(等份越多,画出。