,安徽中考20142018 考情分析,基础知识梳理,中考真题汇编,安徽中考20142018 考情分析,说明:纵观近五年安徽中考,发现单独命制一次函数的试题没有出现过,考查的分值不大.2014年与一次方程、不等式综合考查,20152018年连续四年与反比例函数结合考查,值得关注的是2016年将函数融合
中考大一轮数学复习课件 课时13 一次函数Tag内容描述:
1、安徽中考20142018 考情分析,基础知识梳理,中考真题汇编,安徽中考20142018 考情分析,说明:纵观近五年安徽中考,发现单独命制一次函数的试题没有出现过,考查的分值不大.2014年与一次方程、不等式综合考查,20152018年连续四年与反比例函数结合考查,值得关注的是2016年将函数融合几何图形的性质进行考查是安徽中考数学命题的新尝试 预测2019年安徽中考,与反比例函数图象、简单几何图形的性质结合考查的可能性仍然较大另外,以现实生活题材为背景,融合其它知识的函数实际应用题,仍将是考查的一种趋势,复习中尤其要关注,基础知识梳理,考。
2、第三章 函数,第一部分 基础过关,第2讲 一次函数,3,考情通览,4,5,1一次函数的概念 (1)一次函数:形如ykxb(k0)的函数叫做一次函数 (2)正比例函数:当b0时,即ykx(k0)称为正比例函数,知识梳理,要点回顾,6,1.(1)已知一次函数y(k1)x|k|3,则k_. (2)若一次函数y(m3)xm29是正比例函数,则m的值为_.,1,即时演练,3,7,2一次函数的图象与性质 一次函数ykxb(k0)的图象、性质列表如下:,要点回顾,8,9,2.(1)若函数ykx3的图象经过点(3,6),则k_. (2)(2019河池)函数yx2的图象不经过( ) A第一象限 B第二象限 C第三象限 D第四象限 (3)关于函数y2x1,下列结。
3、,第2课时 一次函数,考点突破,3,中考特训,4,广东中考,5,课前小测,B,D,1若一次函数y(k2)x1的函数值y随x的增大而增大,则( ) Ak2 Bk2 Ck0 Dk0,课前小测,C,3(2019广安) 一次函数y2x3的图象经过的象限是( ) A一、二、三 B二、三、四 C一、三、四 D一、二、四,课前小测,4(2019通辽) 如图,直线ykxb(k0)经过点(1,3),则不等式kxb3的解集为_,x1,课前小测,5已知一次函数ykxb(k0)图象过点 (0,2),且与两坐标轴围成的三角形面积为2,求此一次函数的解析式,课前小测,(1)将两点坐标(0,2)(2,0)代入一次函数 ykxb(k0)中,得b2,2kb0, k1.此一次函数。
4、,课时8 一元二次方程及其应用,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 一元二次方程 (1)定义:在整式方程中,只含_个未知数,并且未知数的最高次数是_的方程叫做一元二次方程 (2)一元二次方程的一般形式是_其中_叫做二次项,_叫做一次项,_叫做常数项;_叫做二次项的系数,_叫做一次项的系数 温馨提示 判断方程是否为一元二次方程,应先整理,化成一般形式后再进行判断,注意一元二次方程一般形式中a0.,夯实基本 知已知彼,2. 一元二次方程的解法 (1)直接开平方法:形如x2n或(xm)2n(n0)的方程可用直接开平方法 。
5、首 页 末 页 第一部分第一部分 数与代数数与代数 第五章第五章 函数及其图象函数及其图象 考考 点点 管管 理理 中中 考考 再再 现现 课课 时时 作作 业业 归归 类类 探探 究究 第第1414课时课时 一次函数一次函数 正比例函数正。
6、 第 15 课时 一次函数的应用 (54 分) 一、选择题(每题 6 分,共 18 分) 12019枣庄如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB 上任意一点(不包括端点), 过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8, 则该直线的函数表达式是( ) Ayx4 Byx4 Cyx8 Dyx8 22019东营甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队。
7、一次函数及其应用一次函数及其应用 (知识点总结(知识点总结+ +例题讲解)例题讲解) 一、一次函数的概念:一、一次函数的概念: 1.1.一次函数的概念:一次函数的概念: (1)定义:一般地,如果 y=kx+b(k,b 是常数,k0),那么 y 叫做 x 的一次函数; (2)结构特征: k0; x 的次数是 1; 常数项 b 可以是任意实数。 (3)图像:是不经过原点不经过原点的一条直线。 2.2.。
8、,课时12 平面直角坐标系与函数的概念,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,夯实基本 知已知彼,3. 函数 (1)常量、变量: 在一个变化过程中,始终保持不变的量叫做_,可以取不同数值的量叫做_ (2)函数: 在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有_的值与其对应,那么称x是自变量,y是x的函数 (3)函数的三种表示方法分别是解析法、_、_ (4)画函数图像的一般步骤是列表、_、 _,课前预测你很棒,D,B,D,B,课前预测你很棒,(1,1)(答案不唯一),热点看台 快速提升,热点一 确定点的位置或坐标 热点搜索 确定点的位置。
9、1,第14讲 一次函数,一、正比例函数和一次函数及其性质,二、一次函数ykxb的图象的画法 根据几何知识:两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可一般情况下:正比例函数ykx(k是常数,k0)的图象选取(_,_)、(_,_)来画;一次函数ykxb(k,b是常数,k0),选取它与两坐 标轴的交点: 、(0,b)(即横坐标或纵坐标 为0的点)来画,0,0,1,k,三、直线yk1xb1(k10)与yk2xb2(k20)的位置关系 1两直线平行k1k2且b1b2. 2两直线相交k1k2. 3两直线重合k1k2且b1b2. 4两直线垂直k1k21.,四、用待定系数法确定一次函数解析式的一。
10、首 页 末 页 第一部分第一部分 数与代数数与代数 第五章第五章 函数及其图象函数及其图象 考考 点点 管管 理理 中中 考考 再再 现现 课课 时时 作作 业业 归归 类类 探探 究究 第第1515课时课时 一次函数的应用一次函数的应用 。
11、,课时7 一元一次方程(组)及其应用,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 一元一次方程 (1)定义:只含有_个未知数,并且未知数的次数是_的整式方程叫做一元一次方程 (2)解一元一次方程的步骤: 去_;去_;移_;合并_;系数化为1. 温馨提示 解方程时,有些变形步骤可能用不到,并且也不一定按照自上而下的顺序,要根据方程的形式灵活安排求解步骤熟练后,步骤及检验还可以合并简化,夯实基本 知已知彼,2. 二元一次方程(组) (1)二元一次方程的定义:含有_未知数(元),并且含未知数的项的次数是_的整式方程 (2)二。
12、,课时11 一元一次不等式(组)及其应用,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,夯实基本 知已知彼,夯实基本 知已知彼,课前预测你很棒,C,B,D,C,热点看台 快速提升,热点一 不等式的性质 热点搜索 不等式的性质是解不等式的理论基础,应熟练掌握不等式的3个基本性质,其中特别要注意的是不等式两边同时乘或除以同一个负数,不等号的方向要改变,这是部分同学失分的地方,热点看台 快速提升,B,热点看台 快速提升,热点二 不等式(组)的解集 热点搜索 能使不等式(组)成立的未知数的值的全体叫做不等式(组)的解集借助数轴,通过数形结合。
13、,课时15 反比例函数及其图像,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,课前预测你很棒,C,A,A,C,课前预测你很棒,C,A,课前预测你很棒,热点看台 快速提升,热点一 反比例函数的图像与性质 热点搜索 反比例函数图像为双曲线,图像是以原点为对称中心的中心对称图形,两个分支都无限接近x,y轴,但不会与x轴和y轴相交k的符号决定了图像的位置和函数的增减性,解析 根据已知可得点B的坐标为(1,2),x的取值范围分成四个取值范围进行讨论:当xy2;当1y2;当x1时,y11,故选C.,热点看台 快速提升,A,D,热点看台 快速提升,热点看台 快速提升。
14、,课时6 二次根式,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,夯实基本 知已知彼,课前预测你很棒,课前预测你很棒,B,B,C,D,A,热点看台 快速提升,热点看台 快速提升,C,B,热点看台 快速提升,热点二 二次根式非负性 热点搜索 两个或多个非负数之和等于0,则每个非负数都等于0,从而可以求得各个字母的值,进而求得代数式的值 在初中阶段:绝对值、偶次幂及二次根式都具有非负性,热点看台 快速提升,-9,热点看台 快速提升,热点看台 快速提升,2015,1,热点看台 快速提升,热点看台 快速提升,热点看台 快速提升,答案:,答案:,热点看台 快速。
15、,课时17 二次函数的应用,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 二次函数的最值 二次函数yax2bxc通过配方可得ya,其抛物线关于直线x_对称,顶点坐标为(_,_) (1)当a0时,抛物线开口向_,有最_(填“高”或“低”)点;当x_时,y有最_(填“大”或“小”)值,是_ (2)当a0时,抛物线开口向_,有最_(填“高”或“低”)点;当x_时,y有最_(填“大”或“小”)值,是_ 2. 用二次函数解决实际问题 应用二次函数解决实际问题的基本思路: (1)理解问题 (2)分析问题中的变量和常量,以及它们之间的关系 (3)用函数关系式表。
16、,课时16 二次函数及其图象,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,夯实基本 知已知彼,课前预测你很棒,C,A,C,A,课前预测你很棒,B,C,C,热点看台 快速提升,热点一 二次函数的图像与性质 热点搜索 二次函数yax2bxc(a0)的图像位置、开口方向及大小等性质都与系数a,b,c有关系具体如下:(1)a0时开口向上; a0时,抛物线与y轴的正半轴相交;c0,抛物线过原点;c0时,抛物线与x轴有两个交点;b24ac0时,抛物线与x轴没有交点;b24ac0时,抛物线与x轴有一个交点,热点看台 快速提升,典例分析1 (2013四川资阳)如图,抛物线yax2bxc(a0)过。
17、,课时4 一次函数的应用,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 方案设计、比较问题 (1)在方案比较问题中,首先需设法求出不同方案各自的函数式求函数式时,有图像的,多用待定系数法求;没有给出图像的,直接依题意进行列式 (2)方案比较问题通常都与不等式、方程相联系比较方案,即比较同一自变量所对应的函数值要会将函数问题转化为方程、不等式问题 方案比较问题在门票、购物、收费、设计等问题中都可涉及 2. 分段函数 (1)分段函数的特征是:不同的自变量区间所对应的函数式不同,其函数图像是一条折线解决。
18、,课时3 一次函数,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,夯实基本 知已知彼,课前预测你很棒,B,A,D,C,课前预测你很棒,D,B,热点看台 快速提升,热点一 一次函数的图像性质 热点搜索 一次函数ykxb中,当k0,b0时,函数图像经过第一、二、三象限;当k0,b0时,函数图像经过第一、二、四象限;当k0,b0时,函数图像经过第二、三、四象限,典例分析1 (2013天津)如图是一对变量满足的函数关系的图像有下列3个不同的问题情境: 小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分。