首 页 末 页 第一部分第一部分 数与代数数与代数 第五章第五章 函数及其图象函数及其图象 考考 点点 管管 理理 中中 考考 再再 现现 课课 时时 作作 业业 归归 类类 探探 究究 第第1717课时课时 二次函数的图象和性质二次函数的,首 页 末 页 第一部分第一部分 数与代数数与代数 第三章
中考大一轮数学复习课件 课时6 二次根式Tag内容描述:
1、首 页 末 页 第一部分第一部分 数与代数数与代数 第五章第五章 函数及其图象函数及其图象 考考 点点 管管 理理 中中 考考 再再 现现 课课 时时 作作 业业 归归 类类 探探 究究 第第1717课时课时 二次函数的图象和性质二次函数的。
2、首 页 末 页 第一部分第一部分 数与代数数与代数 第三章第三章 方程与方程组方程与方程组 考考 点点 管管 理理 中中 考考 再再 现现 课课 时时 作作 业业 归归 类类 探探 究究 第第9 9课时课时 一元二次方程一元二次方程 首 页。
3、第2课时 数的开方与二次根式 课标要求 1.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方 根、立方根. 2.了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、 乘、除运算法则,会用它们进行有关的简单四则运算. 3.了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算 求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方。
4、首 页 末 页 第一部分第一部分 数与代数数与代数 第五章第五章 函数及其图象函数及其图象 考考 点点 管管 理理 中中 考考 再再 现现 课课 时时 作作 业业 归归 类类 探探 究究 第第1818课时课时 二次函数的应用二次函数的应用 。
5、,第4课时 二次根式,考点突破,3,中考特训,4,广东中考,5,课前小测,B,B,课前小测,D,B,课前小测,A,知识精点,知识点一:二次根式的相关概念,3最简二次根式:同时满足两个条件(1)被开方数 中不含能开得尽方的因数或因式;(2)被开方数 不含分母 4同类二次根式:几个二次根式化成最简二次根 式后,如果被开方数相同则叫做同类二次根式,大于或等于零,知识精点,知识点二:二次根式的有关性质及运算,a,a,知识精点,知识点三:二次根式的大小比较,2找出与平方后所得数字相邻的两个开的尽 方的整数,如459;,考点突破,考点一:二次根式的相关概念,D,考点。
6、,课时9 一元二次方程根的判别式,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 一元二次方程根的判别式 关于x的一元二次方程ax2bxc0(a0)的根的判别式为_ (1)b24ac0一元二次方程ax2bxc0(a0)有两个_实数根,即x1,2_ (2)b24ac0一元二次方程ax2bxc0(a0)有_相等的实数根,即x1x2_ (3)b24ac0一元二次方程ax2bxc0(a0)_实数根 温馨提示 在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件 2. 一元二次方程根与系数的关系 若关于x的一元二次方程ax2bxc0(a0)有两根分别为x1,x2,那。
7、 第 6 课时 二次根式 (78 分) 一、选择题(每题 4 分,共 28 分) 12019南京面积为 4 的正方形的边长是( ) A4 的平方根 B4 的算术平方根 C4 开平方的结果 D4 的立方根 22018日照若式子 m2 m1 2有意义,则实数m的取值范围是( ) Am2 Bm2 且m1 Cm2 Dm2 且m1 32018兰州下列二次根式中,是最简二次根式的是 ( ) A. 18 。
8、,课时8 一元二次方程及其应用,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 一元二次方程 (1)定义:在整式方程中,只含_个未知数,并且未知数的最高次数是_的方程叫做一元二次方程 (2)一元二次方程的一般形式是_其中_叫做二次项,_叫做一次项,_叫做常数项;_叫做二次项的系数,_叫做一次项的系数 温馨提示 判断方程是否为一元二次方程,应先整理,化成一般形式后再进行判断,注意一元二次方程一般形式中a0.,夯实基本 知已知彼,2. 一元二次方程的解法 (1)直接开平方法:形如x2n或(xm)2n(n0)的方程可用直接开平方法 。
9、首 页 末 页 第一部分第一部分 数与代数数与代数 第二章第二章 代数式代数式 考考 点点 管管 理理 中中 考考 再再 现现 课课 时时 作作 业业 归归 类类 探探 究究 第第6 6课时课时 二次根式二次根式 首 页 末 页 考考 点点。
10、,课时17 二次函数的应用,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 二次函数的最值 二次函数yax2bxc通过配方可得ya,其抛物线关于直线x_对称,顶点坐标为(_,_) (1)当a0时,抛物线开口向_,有最_(填“高”或“低”)点;当x_时,y有最_(填“大”或“小”)值,是_ (2)当a0时,抛物线开口向_,有最_(填“高”或“低”)点;当x_时,y有最_(填“大”或“小”)值,是_ 2. 用二次函数解决实际问题 应用二次函数解决实际问题的基本思路: (1)理解问题 (2)分析问题中的变量和常量,以及它们之间的关系 (3)用函数关系式表。
11、,课时16 二次函数及其图象,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,夯实基本 知已知彼,课前预测你很棒,C,A,C,A,课前预测你很棒,B,C,C,热点看台 快速提升,热点一 二次函数的图像与性质 热点搜索 二次函数yax2bxc(a0)的图像位置、开口方向及大小等性质都与系数a,b,c有关系具体如下:(1)a0时开口向上; a0时,抛物线与y轴的正半轴相交;c0,抛物线过原点;c0时,抛物线与x轴有两个交点;b24ac0时,抛物线与x轴没有交点;b24ac0时,抛物线与x轴有一个交点,热点看台 快速提升,典例分析1 (2013四川资阳)如图,抛物线yax2bxc(a0)过。
12、,课时6 二次根式,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,夯实基本 知已知彼,课前预测你很棒,课前预测你很棒,B,B,C,D,A,热点看台 快速提升,热点看台 快速提升,C,B,热点看台 快速提升,热点二 二次根式非负性 热点搜索 两个或多个非负数之和等于0,则每个非负数都等于0,从而可以求得各个字母的值,进而求得代数式的值 在初中阶段:绝对值、偶次幂及二次根式都具有非负性,热点看台 快速提升,-9,热点看台 快速提升,热点看台 快速提升,2015,1,热点看台 快速提升,热点看台 快速提升,热点看台 快速提升,答案:,答案:,热点看台 快速。