2021 年春中考二轮复习旋转变换综合型压轴题专题突破训练年春中考二轮复习旋转变换综合型压轴题专题突破训练 2 1如图 1,AE 是ABC 的高,AEBE,D 是 AE 上的一点,且 DECE,连接 BD,CD (1)求证:AECBED; (2)试判断 BD 与 AC 的位置关系和数量关系,并说明理
中考数学二轮复习讲义压轴题二-学案Tag内容描述:
1、2021 年春中考二轮复习旋转变换综合型压轴题专题突破训练年春中考二轮复习旋转变换综合型压轴题专题突破训练 2 1如图 1,AE 是ABC 的高,AEBE,D 是 AE 上的一点,且 DECE,连接 BD,CD (1)求证:AECBED; (2)试判断 BD 与 AC 的位置关系和数量关系,并说明理由; (3)如图 2,若将图 1 中的DCE 绕点 E 旋转 度(0180)后,BD 与 AC 的位。
2、2021 年春中考二轮复习旋转变换综合型压轴题专题突破训练年春中考二轮复习旋转变换综合型压轴题专题突破训练 1 1已知正方形 ABCD,E 为平面内任意一点,连接 AE,BE,将ABE 绕点 B 顺时针旋转 90得到BFC (1)如图 1,求证: AECF; AECF (2)若 BE2, 如图 2,点 E 在正方形内,连接 EC,若AEB135,EC5,求 AE 的长; 如图 3,点 E 在正方。
3、几何压轴题型类型一 动点探究型在菱形ABCD中,ABC60,点P是射线BD上一动点,以AP为边向右侧作等边APE,点E的位置随着点P的位置变化而变化(1)如图,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是_,CE与AD的位置关系是_;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图,图中的一种情况予以证明或说理);(3)如图,当点P在线段BD的延长线上时,连接BE,若AB2,BE2,求四边形ADPE的面积【分析】 (1)要求BP与CE的数量关系,连接AC,由菱形和等边三角形的性质根据SAS可证明AB。
4、2021 年年中考中考二轮复习图形性质综合型填空压轴题专题突破训练二轮复习图形性质综合型填空压轴题专题突破训练 1如图所示,在 ABC 中,ABAC10 5,BD、CE 为 ABC 的两条中线,且 BDCE 于点 N,M 为线段 BD 上的动点,则 AM+EM 的最小值为_ 2如图所示,在正方形ABCD中,点E为边CD上一点,2CEDE,AE交对角线BD于点G,过点 G作FGAE交BC于。
5、2021 年春中考二轮复习图形的变换综合型压轴题专题突破训练年春中考二轮复习图形的变换综合型压轴题专题突破训练 1在ABC 中,C90,AC2,BC2,点 D 为边 AC 的中点(如图) ,点 P、Q 分别是射线 BC、 BA 上的动点,且 BQBP,联结 PQ、QD、DP (1)求证:PQAB; (2)如果点 P 在线段 BC 上,当PQD 是直角三角形时,求 BP 的长; (3)将PQD 沿直。
6、学科教师辅导讲义学员编号: 年 级:中 考课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第07讲-反比例函数授课类型T同步课堂P实战演练S归纳总结教学目标 理解反比例函数的概念,能根据已知条件确定反比例函数的解析式; 会画反比例函数图象,根据图象和解析式探索并理解其基本性质; 能用反比例函数解决简单实际问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理(一)、反比例函数的概念一般地,形如_ y或ykx1 (k是常数,k0)的函数叫做反比例函数1反比例函数y中的是一个分式,所以自变量_ x0_,函数与x轴。
7、高效提分 源于优学第06讲 解直角三角形知识框架知识要点一锐角三角函数1.定义:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)都叫做角A的锐角三角函数。2.三角函数 正弦sinA= 余弦cosA= 正切tanA= 余切cotA=3.特殊角的三角函数典例分析例1.如图,点A为边上任意一点,作ACBC于点C,CDAB于点D,下列用线段比表示sin的值,错误的是()A B C D例2.在ABC中,若|sinA|+(cosB)2=0,A,B都是锐角,则C的度数是(。
8、高效提分 源于优学第04讲 几何综合知识构图学好几何图形,一定要从基本元素、图形的性质和判定,两个方面入手思考。知识要点一全等、相似三角形(一)相似三角形1、相似三角形的性质:相似三角形对应角相等,对应边成比例.相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.相似三角形周长的比等于相似比.相似三角形面积的比等于相似比的平方.2、相似三角形的判定如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,。
9、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第08讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标 深刻理解并运用二次函数的相关知识点; 掌握常考重点题型及相关解法,突破中考数学第22、23题; 提高综合分析与解题能力。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、求证“两线段相等”的问题2、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题3、平行于y轴的动线段长度的最大值”的问题4、“在定直线(常为抛物线的对。
10、 学科教师辅导讲义学员编号: 年 级:九年级 课 时 数:3学员姓名:辅导科目:数学学科教师:授课主题第01讲-中考计算授课类型T同步课堂P实战演练S归纳总结教学目标 绝对值的性质及相关计算; 零指数幂、负指数幂的意义及运算法则; 平方根、立方根、二次根式的运算法则; 特殊角的三角函数值。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、知识框架二、知识概念1、实数的分类:2、绝对值、相反数、倒数一个数的绝对值就是表示这个数的点与原点的距离,|a|0。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a0;若|a|=-a。
11、学科教师辅导讲义学员编号: 年 级:中 考课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第03讲-数据分析与概率初步授课类型T同步课堂P实战演练S归纳总结教学目标 了解总体、个体样本和样本容量等与统计有关的概念,体会抽样的必要性,了解简单随机抽样; 会求一组数据的平均数、加权平均数、中位数、众数、极差、方差,能理解它们在实际问题中反映的意义,而且会运用样本估计总体的思想方法解决实际应用问题; 能从实际问题中了解概率的意义,能用列举法计算随机事件发生的概率。授课日期及时段T(Textbook-Based)同步课堂体。
12、 学科教师辅导讲义学员编号: 年 级:九年级 课 时 数:3学员姓名:辅导科目:数学学科教师:授课主题第02讲-方程与不等式授课类型T同步课堂P实战演练S归纳总结教学目标授课日期及时段T(Textbook-Based)同步课堂体系搭建一、知识框架典例分析考点一:一次方程、二元一次方程组例1、关于的方程是一元一次方程,则为 ( )A、 B、 C、 D、例2、二元一次方程组的解是 ( )A。
13、学科教师辅导讲义学员编号: 年 级:中 考课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第07讲-反比例函数授课类型T同步课堂P实战演练S归纳总结教学目标 理解反比例函数的概念,能根据已知条件确定反比例函数的解析式; 会画反比例函数图象,根据图象和解析式探索并理解其基本性质; 能用反比例函数解决简单实际问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理(一)、反比例函数的概念一般地,形如_ (k是常数,k0)的函数叫做反比例函数1反比例函数y中的是一个分式,所以自变量 ,函数与x轴、y轴无交点2。
14、2017年春季高一年级数学教材 2017年春季九年级数学教材A版第05讲 中考应用题温故知新中考常考应用题题型分类:1、 方程类:一元一次方程类、二元一次方程组类、分式方程类、一元二次方程类。2、 不等式(组类):题目中出现不等关键字,必列不等式(组)来解决。3、 函数类:正比例函数类、一次函数类、分段函数类、二次函数类。智慧乐园大约在1500年前,孙子算经就记载了一道数学题,书中是这样叙述的:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?【解析】兔子12(只),鸡23(只)。知识要点一方程类应用题中考涉及到的。
15、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第08讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标 深刻理解并运用二次函数的相关知识点; 掌握常考重点题型及相关解法,突破中考数学第22、23题; 提高综合分析与解题能力。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、求证“两线段相等”的问题2、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题3、平行于y轴的动线段长度的最大值”的问题4、“在定直线(常为抛物线的对。
16、高效提分 源于优学第04讲 几何综合知识构图学好几何图形,一定要从基本元素、图形的性质和判定,两个方面入手思考。知识要点一全等、相似三角形(一)相似三角形1、相似三角形的性质:相似三角形对应角相等,对应边成比例.相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.相似三角形周长的比等于相似比.相似三角形面积的比等于相似比的平方.2、相似三角形的判定如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,。
17、 学科教师辅导讲义学员编号: 年 级:九年级 课 时 数:3学员姓名:辅导科目:数学学科教师:授课主题第01讲-中考计算授课类型T同步课堂P实战演练S归纳总结教学目标 绝对值的性质及相关计算; 零指数幂、负指数幂的意义及运算法则; 平方根、立方根、二次根式的运算法则; 特殊角的三角函数值。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、知识框架二、知识概念1、实数的分类:2、绝对值、相反数、倒数一个数的绝对值就是。
18、2017年春季高一年级数学教材 2017年春季九年级数学教材A版第05讲 中考应用题温故知新中考常考应用题题型分类:1、 方程类:一元一次方程类、二元一次方程组类、分式方程类、一元二次方程类。2、 不等式(组类):题目中出现不等关键字,必列不等式(组)来解决。3、 函数类:正比例函数类、一次函数类、分段函数类、二次函数类。智慧乐园大约在1500年前,孙子算经就记载了一道数学题,书中是这样叙述的:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?知识要点一方程类应用题中考涉及到的方程类应用题有:一元一次方程类、二。
19、中小学课外辅导领军品牌_第二讲 因动点产生的四边形例1:(两点固定求满足要求的四边形问题)如图,在直角梯形中,点为坐标原点,点在轴的正半轴上,对角线,相交于点,(1)线段的长为 ,点的坐标为 ;(2)求的面积;(3)求过,三点的抛物线的解析式;MCBOAMCBOA(4)若点在(3)的抛物线的对称轴上,点为该抛物线上的点,且以,四点为顶点的四边形为平行四边形,求点的坐标【解答】解:(1)如图,作CGAO与x轴交于点G,则CB=AG,OA=2CB,OA=2AG,AO=4,OG=2,由于AB为4,CBOA,则C点纵坐标为4,C(2,4)。
20、第二讲 因动点产生的四边形例1:(两点固定求满足要求的四边形问题)如图,在直角梯形中,点为坐标原点,点在轴的正半轴上,对角线,相交于点,(1)线段的长为 ,点的坐标为 ;(2)求的面积;(3)求过,三点的抛物线的解析式;MCBOAMCBOA(4)若点在(3)的抛物线的对称轴上,点为该抛物线上的点,且以,四点为顶点的四边形为平行四边形,求点的坐标例2:如图抛物线经过A(1,0),C(2,)两点,与x轴交于另一点B(1) 求此地物线的解析式;(2) 若抛物线的顶点为M,点P为线段OB上一动点 (不与点B重合),点Q在线段MB上移动,且MPQ=45,设。