与圆有关的概念聚焦考点温习理解1、圆的定义在一个个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转所形成的图形叫做圆,固定的端点 O 叫做圆心,线段 OA 叫做半径。2、弦连接圆上任意两点的线段叫做弦。 (如图中的 AB)3.直径经过圆心的弦叫做直径。 (如图中的 CD
中考数学培优含解析之位置与坐标Tag内容描述:
1、与圆有关的概念聚焦考点温习理解1、圆的定义在一个个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转所形成的图形叫做圆,固定的端点 O 叫做圆心,线段 OA 叫做半径。2、弦连接圆上任意两点的线段叫做弦。 (如图中的 AB)3.直径经过圆心的弦叫做直径。 (如图中的 CD)直径等于半径的 2 倍。4.半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。5.弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。弧用符号“”表示,以 A,B 为端点的弧记作“ ”,读作“圆弧 AB”或“弧 AB”。大于半圆的。
2、数据的收集与处理 聚焦考点温习理解一、调查方式1.普查:为了某一特定目的,而对考察对象进行全面的调查,叫普查.2.抽样调查:抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.二、总体、个体、样本及样本容量(1)总体:把所要考察对象的全体叫总体(2)个体:每一个考察对象叫做个体(3)样本:从总体中所抽取的一部分个体叫做总体的一个样本(4)样本容量:样本中个体的数目叫做样本容量三、平均数(1 )平均数:一般地,如果有 n 个数 ,21nx 那么,)(2nxxn叫做这 n 个数的平均数, 读作“x 拔” 。(2 )加权平均数:如果 n 个数。
3、与圆有关的计算聚焦考点温习理解一、正多边形与圆1. 正多边形的半径:正多边形外接圆的半径。2. 正多边形的边心距:正多边形内切圆的半径。3. 正多边形的中心角:正多边形每一条边所对的圆心角=018n。4. 正 n 边形的 n 条半径把正 n 边形分成 n 个全等的等腰三角形,每个等腰三角形又被相应的边心距分成两个全等的直角三角形。二、弧长和扇形面积1、弧长公式n的圆心角所对的弧长 l 的计算公式为 180rnl2、扇形面积公式 lRnS21360扇其中 n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长。3、圆锥的侧面积 rllS21其中 l 是圆锥的母线。
4、与圆有关的位置关系聚焦考点温习理解一、点和圆的位置关系设O 的半径是 r,点 P 到圆心 O 的距离为 d,则有:dr 点 P 在O 外。二、直线与圆的位置关系直线和圆有三种位置关系,具体如下: (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。如果O 的半径为 r,圆心 O 到直线 l 的距离为 d,那么:直线 l 与O 相交 = dr;切线的判定和性质 : (1) 、切线的。
5、位置与坐标 聚焦考点温习理解1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。其中,水平的数轴叫做 x 轴或横轴,取向右为正方向;铅直的数轴叫做 y 轴或纵轴,取向上为正方向;两轴的交点 O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。为了便于描述坐标平面内点的位置,把坐标平面被 x 轴和 y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x 轴和 y 轴上的点,不属于任何象限。2、点的坐标的概念点的坐标用(a,b)表示,其顺。