第 4 讲 二次根式一、选择题1(2017广安 )要使二次根式 在实数范围内有意义,则 x 的取值范围是( 2x 4B )Ax2 Bx2Cx2 Dx22(2017济宁 )若 1 在实数范围内有意义,则 x 满足的条件是( 2x 1 1 2xC )Ax Bx12 12Cx Dx12 123(2017武
中考数学总复习第12讲二次函数Tag内容描述:
1、第 4 讲 二次根式一、选择题1(2017广安 )要使二次根式 在实数范围内有意义,则 x 的取值范围是( 2x 4B )Ax2 Bx2Cx2 Dx22(2017济宁 )若 1 在实数范围内有意义,则 x 满足的条件是( 2x 1 1 2xC )Ax Bx12 12Cx Dx12 123(2017武汉 )计算 的结果为( A )36A6 B6C18 D184(2017广州 )下列运算正确的是( D )A. B2 3a b6 a b2 a b3 2a b3C. a D| a|a(a0)a25(2017贵港 )下列二次根式中,最简二次根式是( A )A B.2 12C. D.15 a26(2017重庆 B 卷) 估计 1 的值在( C )13A2 和 3 之间 B3 和 4 之间C4 和 5 之间 D5 和 6 之间7(2017十堰 )下列运算正确的是。
2、第12讲二次函数(一)(参考用时:35分钟)A层(基础)1.关于二次函数y=2x2+4x-1,下列说法正确的是(D)(A)图象与y轴的交点坐标为(0,1)(B)图象的对称轴在y轴的右侧(C)当x0时,y的值随x值的增大而减小(D)y的最小值为-3解析:y=2x2+4x-1=2(x+1)2-3,当x=0时,y=-1,故选项A错误;该函数的对称轴是直线x=-1,故选项B错误;当x-1时,y随x的增大而减小,故选项C错误;当x=-1时,y取得最小值,此时y=-3,故选项D正确.故选D.2.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2 m,水面宽4 m.如图(2)建立平面直角坐标系,则抛物线的表达式是(C。
3、 1 专题专题 12 12 二次函数二次函数 1二次函数的概念:一般地,自变量 x 和因变量 y 之间存在如下关系: y=ax2+bx+c(a0,a、b、 c 为常数), 则称 y 为 x 的二次函数。抛物线)0,( 2 acbacbxaxy是常数,叫做二次函数的一般式。 2.二次函数 y=ax 2 +bx+c(a0)的图像与性质 (1)对称轴: 2 b x a (2)顶点坐标:。
4、第三章 函 数,第10讲 一次函数,01,02,03,04,目录导航,课 前 预 习,C,C,x2,D,1.5,考 点 梳 理,课 堂 精 讲,D,C,C,x2,B,x1,往年 中 考,C,一,C,x2,y60.3x,。
5、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第08讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标 深刻理解并运用二次函数的相关知识点; 掌握常考重点题型及相关解法,突破中考数学第22、23题; 提高综合分析与解题能力。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、求证“两线段相等”的问题2、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题3、平行于y轴的动线段长度的最大值”的问题4、“在定直线(常为抛物线的对。
6、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第08讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标 深刻理解并运用二次函数的相关知识点; 掌握常考重点题型及相关解法,突破中考数学第22、23题; 提高综合分析与解题能力。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、求证“两线段相等”的问题2、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题3、平行于y轴的动线段长度的最大值”的问题4、“在定直线(常为抛物线的对。
7、第 12 讲 二次函数A组 基础题组一、选择题1.(2018陕西)对于抛物线 y=ax2+(2a-1)x+a-3,当 x=1时,y0,则这条抛物线的顶点一定在( )A.第一象限 B.第二象限C.第三象限 D.第四象限2.(2018威海)抛物线 y=ax2+bx+c(a0)如图所示,下列结论错误的是( )A.abc4ac D.2a+b03.(2017甘肃兰州)将抛物线 y=3x2-3向右平移 3个单位长度,得到的新抛物线的表达式为( )A.y=3(x-3)2-3 B.y=3x2C.y=3(x+3)2-3 D.y=3x2-64.如图,一次函数 y1=kx+n(k0)与二次函数 y2=ax2+bx+c(a0)的图象相交于 A(-1,5),B(9,2)两点,则关于 x的不等式 kx+nax 2+bx+c的解集为( )A.-1x9 B.-1x。
8、第12讲 二次函数(一),二次函数的定义,y=ax2+bx+c,形如: (其中a,b,c是常数,且a0)的函数是二次函数.,二次函数的图象及画法,二次函数y=ax2+bx+c(a0)的图象和性质,减小,增大,增大,减小,小,大,用待定系数法求二次函数的表达式,y=a(x-h)2+k,y=a(x-x1)(x-x2),二次函数的图象与性质,例1 (2019烟台)已知二次函数y=ax2+bx+c的y与x的部分对应值如表:,下列结论:抛物线的开口向上;抛物线的对称轴为直线x=2;当00;抛物线与x轴的两个交点间的距离是4;若A(x1,2),B(x2,3)是抛物线上两点,则x1x2,其中正确的个数是( ) (A)2 (B)3 (C)4 (D)5,B,解析:由表格中数据。
9、 1 专题专题 12 12 二次函数二次函数 1二次函数的概念:一般地,自变量 x 和因变量 y 之间存在如下关系: y=ax2+bx+c(a0,a、b、 c 为常数), 则称 y 为 x 的二次函数。抛物线)0,( 2 acbacbxaxy是常数,叫做二次函数的一般式。 2.二次函数 y=ax 2 +bx+c(a0)的图像与性质 (1)对称轴: 2 b x a (2)顶点坐标: 。
10、第12讲 实数及其运算,总纲目录,泰安考情分析,基础知识过关,知识点一 二次函数的定义 一般地,形如 y=ax2+bx+c(a、b、c是常数,a0) 的函数叫做二次函数,其中x是自变量,a、b、c分别是二次项系数、一次项系数和常数项. 温馨提示 二次函数的一般形式的结构分析:(1)含自变量的代数式,是整式;(2)自变量x的最高次数为2;(3)二次项系数a0.,知识点二 二次函数的图象和性质,1.二次函数y=ax2+bx+c(a0)的图象与性质,2.二次函数y=a(x-h)2+k(a0)的图象与性质,知识点三 二次函数y=ax2+bx+c(a0)的图 特征与系数a、b、c的关系,知识点四 二次函数图象的平移 1.。
11、第 13 讲 二次函数综合题1(2017东营 )如图,直线 y x 分别与 x 轴,y 轴交于 B,C 两点,点33 3A 在 x 轴上,ACB90,抛物线 yax 2bx 经过 A,B 两点3(1)求 A,B 两点的坐标;(2)求抛物线的解析式;(3)点 M 是直线 BC 上方抛物线上的一点,过点 M 作 MHBC 于点 H,作MDy 轴交 BC 于点 D,求DMH 周长的最大值解:(1)直线 y x 分别与 x 轴,y 轴交于 B,C 两点,33 3B(3,0),C (0, ),3OB 3,OC ,3tanBCO ,33 3BCO60.ACB90,ACO30 , tan 30 ,即 ,AOCO 33 AO3 33解得 AO1.A(1,0);(2)将 A(1,0),B (3,0)代入抛物线 yax 2bx ,3得Error!。
12、第一章 数与式,第2讲 二次根式,01,02,03,04,目录导航,课 前 预 习,C,C,A,2,2,考 点 梳 理,0,0,无,a0,a,a,课 堂 精 讲,D,x1,x2且x0,A,C,2,D,1,D,3,D,往年 中 考,x2,x9,A,3,2,2,1,2,D,。
13、第12课时 二次函数,考点梳理,自主测试,考点一 二次函数的概念 一般地,如果y=ax2+bx+c(a,b,c是常数,a0),那么y叫做x的二次函数.任意一个二次函数都可化成y=ax2+bx+c(a,b,c是常数,a0)的形式,因此y=ax2+bx+c(a0)叫做二次函数的一般形式. 注意:1.二次项系数a0;2.ax2+bx+c必须是整式;3.一次项系数可以为零,常数项也可以为零,一次项系数和常数项可以同时为零;4.自变量x的取值范围是全体实数.,考点二 二次函数的图象及性质,考点梳理,自主测试,考点梳理,自主测试,考点三 二次函数图象的特征与a,b,c及b2-4ac的符号之间的关系,考点梳理,自主测试,考点。
14、第 12 讲 二次函数及其应用一、选择题1(2017哈尔滨 )抛物线 y (x )23 的顶点坐标是 ( B )35 12A( , 3) B( ,3)12 12C( ,3) D( ,3)12 122(2017宁波 )抛物线 yx 22xm 22(m 是常数)的顶点在( A )A第一象限 B第二象限C第三象限 D第四象限3(2017宿迁 )将抛物线 yx 2 向右平移 2 个单位,再向上平移 1 个单位,所得抛物线相应的函数表达式是( C )Ay(x2) 21 By(x2) 2 1Cy(x2) 21 Dy(x2) 214(2017金华 )对于二次函数 y(x1) 22 的图象与性质,下列说法正确的是( B )A对称轴是直线 x1,最小值是 2B对称轴是直线 x1,最大值是 2C对称轴是直线 x1,。
15、第12讲 二次函数,2.二次函数的平移 由于抛物线的开口方向与开口大小均由二次项系数a确定,所以两个二次函数如果a相等,那么其中一个图象可以由另一个图象平移得到.,3.抛物线y=ax2+bx+c与系数a,b,c的关系,4.二次函数与一元二次方程的关系,考法1,考法2,考法3,考法4,考法5,考法6,二次函数的概念 变量y是x的二次函数的关键:化简后的关于自变量的代数式是整式,且x的最高指数为2,二次项的系数不能为0. 例1若 是二次函数,则m的值是( ) A.2 B.0 C.-2 D.2或-2 答案C 解析根据题意有m2-2=2,且2-m0,故解得m=-2. 误区警示二次函数中二次项系数不为0这个。
16、第三章 函 数,第12讲 二次函数,01,02,03,04,目录导航,课 前 预 习,增大,A,C,D,y2(x2)23,D,x1或x5,考 点 梳 理,yax2bxc,(h,k),右,左,上,下,两个相等的实数根,一个交点,无实数根,无交点,xx2或xx1,x1xx2,课 堂 精 讲,答案 A,C,A,A,1,5,往 年 中 考,D,D,5,。