第1页共10页专题专题52中考数学最值问题中考数学最值问题在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。一、解决几何最值问题的要领一、解决几何最值问题的要领(1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线
中考数学最值问题Tag内容描述:
1、 1 一、单选题一、单选题 1如图,正ABC 的边长为 2,过点 B 的直线 lAB,且ABC 与ABC关于直线 l 对称,D 为线段 BC 上一动点,则 ADCD的最小值是( ) A4 B3 C2 D2 【答案】A 【解析】 连接 CC,连接 AC 交l于点 D,连接 AD,此时 AD+CD 的值最小,如图所示 【关键点拨】本题考查了轴对称中的最短线路问题以及等边三角形的性质,找出点 C 关于 BC /对称的点是 A /是解题的关键. 2 2某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方 体最少有( ) A4 个 B5个 C6个 D7 个 【答案】B 【关键点。
2、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 1414 最值问题最值问题 一、单选题一、单选题 1如图,正ABC 的边长为 2,过点 B 的直线 lAB,且ABC 与ABC关于直线 l 对称,D 为线段 BC 上一动点,则 ADCD的最小值是( ) A4 B3 C2 D2 2某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方 体最少有( ) A4 个 B5个 C6个 D7 个 3跳台滑雪是冬季奥运会比赛项目之一运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起 跳后的竖直高度 (单位: )与水平距离 (单位: )近似满足函数关系。
3、 1 一、单选题一、单选题 1将全体正奇数排成一个三角形数阵 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 根据以上排列规律,数阵中第 25 行的第 20 个数是( ) A639 B637 C635 D633 【答案】A 【关键点拨】 考查归纳推理的应用,利用等差数列的通项公式是解决本题的关键 2按一定规律排列的一列数依次为:2,3,10,15,26,35,按此规律排列下去,则这列数中的第 100 个数是( ) A9999 B10000 C10001 D10002 【答案】A 2 【关键点拨】 本题考查了规律题数字的变化类,分数所在的序数为奇数和偶数两个方面考虑求解是解题的关键,另 外对平。
4、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 15 15 规律性问题规律性问题 一、单选题一、单选题 1将全体正奇数排成一个三角形数阵 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 根据以上排列规律,数阵中第 25 行的第 20 个数是( ) A639 B637 C635 D633 2按一定规律排列的一列数依次为:2,3,10,15,26,35,按此规律排列下去,则这列数中的第 100 个数是( ) A9999 B10000 C10001 D10002 3下列图形都是由同样大小的黑色正方形纸片组成,其中第个图中有 3 张黑色正方形纸片,第个图中 有 5张黑色正方形纸片,第个图中有 7 张黑色正方。
5、 1 【备战 2019 年中考数学热点、难点突破 】 考纲要求考纲要求: 1.会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图),会判断简单物体的 三视图,能根据三视图描述简单的几何体或实物原型; 2.了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制作立体模型; 3.了解基本几何体与其三视图、展开图(球除外)之间的关系;知道这种关系在现实生活中的应用(如物体 的包装). 基础知识回顾基础知识回顾: 知识点知识点 内内 容容 关键点拨关键点拨 1.三视图 主视图:从正面看到的图形. 俯视图:从上面看到的图形。
6、 1 【备战 2019 年中考数学热点、难点突破】 考纲要求考纲要求: 1.会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图),会判断简单物体的 三视图,能根据三视图描述简单的几何体或实物原型; 来源:Z。xx。k.Com 2.了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制作立体模型; 3.了解基本几何体与其三视图、展开图(球除外)之间的关系;知道这种关系在现实生活中的应用(如物体 的包装). 基础知识回顾基础知识回顾: 知识点知识点 来来 源源: 内内 容容 关键点拨关键点拨 1.三视图 主视图:从正面看到的图。
7、 1 【备战 2019 年中考数学热点、难点突破】 专题专题 03 动点型问题动点型问题 考纲要求考纲要求: 点动、线动、图形动构成的问题称为几何动态问题这类问题的特征是以几何图形为载体,运动变化为主 线,集多个知识点、多种解题思想于一题,它综合性强,能力要求高它的特点是:问题背景是特殊图形(或 函数图象),把握好一般与特殊的关系;在分析过程中,要特别关注图形的特性(特殊角、特殊图形的性质、 图形的特殊位置) 基础知识回顾基础知识回顾: 近几年来动点问题一直是中考的热点,主要考查探究运动中一些特殊图形(等腰三角形、直角三角。
8、 1 【备战 2019 年中考数学热点、难点突破】 专题专题 03 动点型问题动点型问题 考纲要求考纲要求: 点动、线动、图形动构成的问题称为几何动态问题这类问题的特征是以几何图形为载体,运动变化为主 线,集多个知识点、多种解题思想于一题,它综合性强,能力要求高它的特点是:问题背景是特殊图形(或 函数图象),把握好一般与特殊的关系;在分析过程中,要特别关注图形的特性(特殊角、特殊图形的性质、 图形的特殊位置) 基础知识回顾基础知识回顾: 近几年来动点问题一直是中考的热点,主要考查探究运动中一些特殊图形(等腰三角形、直角三角。
9、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 1717 探究型问题探究型问题 一、单选题一、单选题 1如图,直线与 x 轴、y 轴分别交于 A、B 两点,点 P 是以 C(1,0)为圆心,1 为半径的圆 上一点,连接 PA,PB,则PAB 面积的最小值是( ) A5 B10 C15 D20 【答案】A 【解析】 作CHAB于H交O于E、F连接BC A(4,0) ,B(0,3) ,OA=4,OB=3,AB=5 SABC= ABCH=ACOB,ABCH=ACOB,5CH=(4+1)3,解得:CH=3,EH=31=2 当点P与E重合时,PAB的面积最小,最小值52=5 故选 A 【关键点拨】 本题考查了一次函数图象上的点的坐标特征、一次函数的性质。
10、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 1717 探究型问题探究型问题 一、单选题一、单选题 1如图,直线与 x 轴、y 轴分别交于 A、B 两点,点 P 是以 C(1,0)为圆心,1 为半径的圆 上一点,连接 PA,PB,则PAB 面积的最小值是( ) A5 B10 C15 D20 2定义一种对正整数 n 的“F”运算:当 n 为奇数时,F(n)=3n+1;当 n 为偶数时,F(n)=(其 中 k 是使 F(n)为奇数的正整数),两种运算交替重复进行,例如,取 n=24,则: 若 n=13,则第 2018 次“F”运算的结果是( ) A1 B4 C2018 D4 2018 3如图,在ABC 中,AB=20cm,AC=12cm。
11、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 18 综合问题综合问题 一、单选题一、单选题 1有一天,兔子和乌龟赛跑比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行不一会儿,乌龟就被远远 的甩在了后面兔子想:“这比赛也太轻松了,不如先睡一会儿”而乌龟一刻不停地继续爬行当兔子 醒来跑到终点时,发现乌龟已经到达了终点正确反映这则寓言故事的大致图象是( ) A B C D 2 如图, 在平面直角坐标系中, 直线 l1: y=x+1 与 x 轴, y 轴分别交于点 A 和点 B, 直线 l2: y=kx (k0) 与直线 l1在第一象限交于点 C若BOC=BCO,则 k 的值为(。
12、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 1818 综合问题综合问题 一、单选题一、单选题 1有一天,兔子和乌龟赛跑比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行不一会儿,乌龟就被远远 的甩在了后面兔子想:“这比赛也太轻松了,不如先睡一会儿”而乌龟一刻不停地继续爬行当兔子 醒来跑到终点时,发现乌龟已经到达了终点正确反映这则寓言故事的大致图象是( ) A B C D 【答案】D 【解析】 乌龟运动的图象是一条直线,兔子运动的图象路程先增大,而后不变,再增大,并且乌龟所用时间最短 故选 D 【关键点拨】 本题考查了函数图象问题。
13、 1 专题专题 1 数轴中的数轴中的“动动”问题问题 已知数轴上三点 M,O,N 对应的数分别为1,0,3,点 P 为数轴上任意一点,其对应的数为 x (1)求 MN 的长; (2)如果点 P 到点 M、点 N 的距离相等,求 x 的值; (3) 数轴上是否存在点 P,使点 P 到点 M、 点 N 的距离之和是 8?若存在, 直接写出 x 的值; 若不存在, 请说明理由 (4)如果点 P 以每分钟 1 个单位长度的速度从点 O 向左运动,同时点 M 和点 N 分别以每分钟 2 个单位 长度和每分钟 3 个单位长度的速度也向左运动设 t 分钟时点 P 到点 M、点 N 的距离相等,求 t 的值 。
14、 1 专题专题 2 三角形中的三角形中的“动动”问题问题 如图,在等边三角形 ABC 中,BC 边上的高 AD=6,E 是高 AD 上的一个动点,F 是边 AB 的中点,在点 E 运动的过程中,存在 EB+EF 的最小值,则这个最小值是 A3 B4 C5 D6 【参考答案】D 【试题解析】如图,连接 CF, 等边ABC 中,AD 是 BC 边上的中线, AD 是 BC 边上的高线,即 AD 垂直平分 BC, EB=EC, 当 B、F、E 三点共线时,EF+EC=EF+BE=CF, 等边ABC 中,F 是 AB 边的中点,AD=CF=6, EF+BE 的最小值为 6,故选 D 【方法点拨】点的运动会引起距离的变化,距离最大或最小的问题一。
15、 1 专题专题 3 四边形四边形中的中的“动动”问题问题 如图,在ABCD 中,对角线 AC、BD 交于点 O,并且DAC=60 ,ADB=15 点 E 是 AD 边上一动点, 延长 EO 交 BC 于点 F在点 E 从 D 点向 A 点移动过程中(点 E 与点 D,A 不重合) ,则四边形 AFCE 的变 化是 A平行四边形矩形平行四边形菱形平行四边形 B平行四边形菱形平行四边形矩形平行四边形 C平行四边形矩形平行四边形正方形平行四边形 D平行四边形矩形菱形正方形平行四边形 【参考答案】B 【试题解析】点 O 是平行四边形 ABCD 的对角线的交点,OA=OC,ADBC,ACF=CAD, COF=AOE,AOECOF。
16、 1 专题专题 4 圆圆中的中的“动动”问题问题 在平面直角坐标系内,以原点 O 为圆心,1 为半径作圆,点 P 在直线 y=3x+23上运动,过点 P 作该圆 的一条切线,切点为 A,则 PA 的最小值为 A3 B2 C3 D2 【参考答案】D 【试题解析】如图,直线 y=3x+23与 x 轴交于点 C,与 y 轴交于点 D,作 OHCD 于 H, 当 x=0 时,y=3x+23=23,则 D(0,23) , 当 y=0 时,3x+23=0,解得 x=2,则 C(2,0) ,CD= 22 2(2 3)=4, 1 2 OHCD= 1 2 OCOD,OH= 2 2 3 4 =3, 连接 OA,如图, PA 为O 的切线,OAPA,PA= 22 OPOA= 2 1OP , 当 OP 的值最小时,PA 。
17、 1 专题专题 5 函数中的函数中的“动动”问题问题 如图,在平面直角坐标系中,边长为 1 的正方形 ABCD 中,AD 边的中点处有一动点 P,动点 P 沿 PDCBAP 运动一周,则 P 点的纵坐标 y 与点 P 走过的路程 s 之间的函数关系用图象表示大致是 A B C D 【参考答案】D 【试题解析】动点 P 运动过程中: 当 0s 1 2 时,动点 P 在线段 PD 上运动,此时 y=2 保持不变; 当 1 2 0)的图象与直线 y=x 相交于点 B,P 是 x 轴的动点,如果 PA+PB 的最小值是 5,那么 k 的值是_ 3如图,直线 y=kx+6 与 x 轴、y 轴分别相交于点 E、F,点 E 的坐标为(8,0。
18、 1 一、一般三角形的旋转问题一、一般三角形的旋转问题 【例 1】如图,ABC 中,ACB=72 ,将ABC 绕点 B 按逆时针方向旋转得到BDE(点 D 与点 A 是对 应点,点 E 与点 C 是对应点),且边 DE 恰好经过点 C,则ABD 的度数为 来源: A36 B40 C45 D50 【答案】A 【名师点睛】本题考查了旋转的性质和等腰三角形的性质以及三角形的内角和等于 180 正确理解旋转的 性质是解题的关键 【例 2】如图,在ABC中,90ACB,ACBC,D 是 AB 边上一点(点 D 与 A,B 不重合),连 接 CD,将线段 CD 绕点 C 按逆时针方向旋转 90 得到线段 CE,连接 DE 交 BC 于点 。
19、第 1 页 / 共 40 页 专题专题 52 中考数学最值问题中考数学最值问题 在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要 分为几何最值和代数最值两大部分。 一、解决几何最值问题的要领一、解决几何最值问题的要领 (1)两点之间线段最短; (2)直线外一点与直线上所有点的连线段中,垂线段最短; (3)三角形两边之和大于第三边或三角形两边之差小于第三边(。
20、第 1 页 / 共 10 页 专题专题 52 中考数学最值问题中考数学最值问题 在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要 分为几何最值和代数最值两大部分。 一、解决几何最值问题的要领一、解决几何最值问题的要领 (1)两点之间线段最短; (2)直线外一点与直线上所有点的连线段中,垂线段最短; (3)三角形两边之和大于第三边或三角形两边之差小于第三边(。