欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库

专题7.3 临界知识问题高考数学选填题压轴题突破讲义

一方法综述 数列的通项公式是数列高考中的热点问题,求数列通项公式时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数阵(数表)问题、点列问题、函数问题中、由复杂递推公式求解数列通项公式问题、两边夹问题

专题7.3 临界知识问题高考数学选填题压轴题突破讲义Tag内容描述:

1、一方法综述数列的通项公式是数列高考中的热点问题,求数列通项公式时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数阵(数表)问题、点列问题、函数问题中、由复杂递推公式求解数列通项公式问题、两边夹问题中的数列通项公式问题、下标为形式的数列通项公式问题中都有所涉及,本讲就这类问题进行分析.二解题策略类型一 数阵(数表)中涉及到的数列通项公式问题【例1】如图所示的“数阵”的特点是:每行每列都成等差数列,则数字7。

2、一方法综述数列与函数、不等式相结合是数列高考中的热点问题,难度较大,求数列与函数、不等式相结合问题时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数列中的恒成立问题、数列中的最值问题、数列性质的综合问题、数列与函数的综合问题、数列与其他知识综合问题中都有所涉及,本讲就这类问题进行分析.二解题策略类型一 数列中的恒成立问题【例1】【安徽省毛坦厂中学2019届高三校区4月联考】已知等差数列满足,数列满足,记数列。

3、一、方法综述形如求等的问题称为“双重最值问题”按其变元的个数可分为一元双重最值问题和多元双重最值问题在本文中,提供一个常用的结论,取不同的值可得到很多命题一个结论:设,为正常数,则(1);(2)证明:设,则,所以,当且仅当时取等,即二、解题策略一、一元双重最值问题1分段函数法:分类讨论,将函数写成分段函数形式,求函数值域即可例1对于a,bR,记Maxa,b= ,函数f(x)=Max,(xR)的最小值是( )(A) (B)1 (C) (D)2【答案】C【解析】f(x)=Max,=,其图象如下图,故答案为2数形结合法:分别画出几个函数图象,结合图。

4、一方法综述如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.当三棱锥有三条棱垂直或棱长相等。

5、一方法综述圆锥曲线中最值与范围问题的常见求法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值在利用代数法解决最值与范围问题时常从以下几个方面考虑:利用判别式来构造不等关系,从而确定取值范围;利用隐含或已知的不等关系建立不等式,从而求出取值范围;利用基本不等式求出取值范围;利用函数的值域的求法,确定取值范围二解题策略类型一 利用题设条件,结合几何特征与性质求范围【例1。

6、一方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间。

7、一方法综述圆锥曲线中最值与范围问题的常见求法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值在利用代数法解决最值与范围问题时常从以下几个方面考虑:利用判别式来构造不等关系,从而确定取值范围;利用隐含或已知的不等关系建立不等式,从而求出取值范围;利用基本不等式求出取值范围;利用函数的值域的求法,确定取值范围二解题策略类型一 利用题设条件,结合几何特征与性质求范围【例1。

8、一方法综述三视图几乎是每年的必考内容,一般以选择题、填空题的形式出现,一是考查相关的识图,由直观图判断三视图或由三视图想象直观图,二是以三视图为载体,考查面积、体积的计算等,均属低中档题. 三视图中的数据与原几何体中的数据不一定一一对应,识图要注意甄别. 揭示空间几何体的结构特征,包括几何体的形状,平行垂直等结构特征,这些正是数据运算的依据.还原几何体的基本要素是“长对齐,高平直,宽相等”.要切实弄清常见几何体(圆柱、圆锥、圆台、棱柱、棱锥、棱台、球)的三视图的特征,熟练掌握三视图的投影方向及正视图原理。

9、一方法综述数列的求和问题是数列高考中的热点问题, 数列的求和问题会渗透多种数学思想,会跟其他知识进行结合进行考查.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数列求和中的新定义问题、子数列中的求和问题、奇偶性在数列求和中的应用、周期性在数列求和中的应用、数列求和的综合问题中都有所涉及,本讲就这类问题进行分析.二解题策略类型一 数列求和中的新定义问题【例1】【湖南师范大学附属中学2019届高三上学期月考(四)】对于数列,定义为。

10、一方法综述立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性.一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等.此类题的求解并没有一定的模式与固定的套路可以沿用,很多学生一筹莫展,无法形成清晰的分析思路,导致该题成为学生的易失分点.究其原因,是因为学生缺乏相关素。

11、一方法综述立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性.一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等.此类题的求解并没有一定的模式与固定的套路可以沿用,很多学生一筹莫展,无法形成清晰的分析思路,导致该题成为学生的易失分点.究其原因,是因为学生缺乏相关素。

12、一方法综述三视图几乎是每年的必考内容,一般以选择题、填空题的形式出现,一是考查相关的识图,由直观图判断三视图或由三视图想象直观图,二是以三视图为载体,考查面积、体积的计算等,均属低中档题. 三视图中的数据与原几何体中的数据不一定一一对应,识图要注意甄别. 揭示空间几何体的结构特征,包括几何体的形状,平行垂直等结构特征,这些正是数据运算的依据.还原几何体的基本要素是“长对齐,高平直,宽相等”.要切实弄清常见几何体(圆柱、圆锥、圆台、棱柱、棱锥、棱台、球)的三视图的特征,熟练掌握三视图的投影方向及正视图原理。

13、一方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间。

14、一方法综述数列的求和问题是数列高考中的热点问题, 数列的求和问题会渗透多种数学思想,会跟其他知识进行结合进行考查.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数列求和中的新定义问题、子数列中的求和问题、奇偶性在数列求和中的应用、周期性在数列求和中的应用、数列求和的综合问题中都有所涉及,本讲就这类问题进行分析.二解题策略类型一 数列求和中的新定义问题【例1】【湖南师范大学附属中学2019届高三上学期月考(四)】对于数列,定义为。

15、【方法综述】导数中的参数问题主要指的是形如“已知不等式成立/存在性/方程的根/零点等条件,求解参数的取值或取值范围”.这类型题目在近几年的高考全国卷还是地方卷中,每一年或多或少都有在压轴选填题或解答题中出现,属于压轴常见题型.学生要想解决这类型的题目,关键的突破口在于如何处理参数,本专题主要介绍分类讨论法和分离参数法.【解答策略】一分离参数法分离参数法是处理参数问题中最常见的一种手段,是把参数和自变量进行分离,分离到等式或不等式的两边(当然部分题目半分离也是可以的,如下面的第2种情形),从而消除参数的影。

16、一、方法综述多元函数的最值问题就是在多个约束条件下,某一个问题的最大和最小值在所列的式子之中,有多个未知数求解多元函数的最值问题技巧性强、难度大、方法多,灵活多变,多元函数的最值问题蕴含着丰富的数学思想和方法解题办法常有:导数法、消元法、基本不等式法、换元法、数形结合法、向量法等二、解题策略类型一 导数法例1【2019福建三明上学期期末考】若不等式对任意恒成立,则实数的值为( )A1 B2 C3 D4【答案】C在上单调递减,在上单调递增,即对任意恒成立,同理可证:对任意恒成立,即,故选C学#【举一反三】【2019福建福。

17、【方法综述】创新型问题主要包括:()将实际问题抽象为数学问题,此类问题往往含有文字语言、符号语言、图表语言,要明确题中已知量与未知量的数学关系,要理解生疏的情境、名词、概念,将实际问题数学化,将现实问题转化为数学问题,构建数学模型,运用恰当的数学方法解模(如借助不等式、导数等工具加以解决).()创新性问题以新概念、新定义给出的信息迁移型创新题,运用“老知识”解决新问题是关键.以新运算给出的发散型创新题,检验运算能力、数据处理能力.以命题的推广给出的类比、归纳型创新题,要注意观察特征、寻找规律,充分。

18、【方法综述】创新型问题主要包括:()将实际问题抽象为数学问题,此类问题往往含有文字语言、符号语言、图表语言,要明确题中已知量与未知量的数学关系,要理解生疏的情境、名词、概念,将实际问题数学化,将现实问题转化为数学问题,构建数学模型,运用恰当的数学方法解模(如借助不等式、导数等工具加以解决).()创新性问题以新概念、新定义给出的信息迁移型创新题,运用“老知识”解决新问题是关键.以新运算给出的发散型创新题,检验运算能力、数据处理能力.以命题的推广给出的类比、归纳型创新题,要注意观察特征、寻找规律,充分。

19、【方法综述】对于临界知识问题,其命题大致方向为从形式上跳出已学知识的旧框框,在试卷中临时定义一种新知识,要求学生快速处理,及时掌握,并正确运用,充分考查学生独立分析问题与解决问题的能力,多与函数、平面向量、数列联系考查.另外,以高等数学为背景,结合中学数学中的有关知识编制综合性问题,是近几年高考试卷的热点之一,常涉及取整函数、最值函数、有界函数、有界泛函数等.【解题策略】类型一 定义新知型临界问题【例1】用C(A)表示非空集合A中的元素个数,定义A*B若A1,2,Bx|(x2ax)(x2ax2)0,且A*B1,设实数a的所有可能取值。

20、【方法综述】对于临界知识问题,其命题大致方向为从形式上跳出已学知识的旧框框,在试卷中临时定义一种新知识,要求学生快速处理,及时掌握,并正确运用,充分考查学生独立分析问题与解决问题的能力,多与函数、平面向量、数列联系考查.另外,以高等数学为背景,结合中学数学中的有关知识编制综合性问题,是近几年高考试卷的热点之一,常涉及取整函数、最值函数、有界函数、有界泛函数等.【解题策略】类型一 定义新知型临界问题【例1】用C(A)表示非空集合A中的元素个数,定义A*B若A1,2,Bx|(x2ax)(x2ax2)0,且A*B1,设实数a的所有可能取值。

【专题7.3 临界知识问题高考数学选填题压轴题突破讲义】相关DOC文档
专题1.5 双重最值问题的解决策略高考数学选填题压轴题突破讲义(解析版)
专题5.3 解析几何中的范围问题高考数学选填题压轴题突破讲义(原卷版)
专题4.4 立体几何中最值问题高考数学选填题压轴题突破讲义(原卷版)
专题5.3 解析几何中的范围问题高考数学选填题压轴题突破讲义(解析版)
专题4.1 复杂的三视图问题高考数学选填题压轴题突破讲义(原卷版)
专题3.2 复杂数列的求和问题高考数学选填题压轴题突破讲义(原卷版)
专题4.3 立体几何的动态问题高考数学选填题压轴题突破讲义(原卷版)
专题4.3 立体几何的动态问题高考数学选填题压轴题突破讲义(解析版)
专题4.1 复杂的三视图问题 高考数学选填题压轴题突破讲义(解析版)
专题4.4 立体几何中最值问题高考数学选填题压轴题突破讲义(解析版)
专题3.2 复杂数列的求和问题高考数学选填题压轴题突破讲义(解析版)
专题6.2 导数中的参数问题高考数学选填题压轴题突破讲义(解析版)
专题1.4 多元问题的最值问题高考数学选填题压轴题突破讲义(解析版)
专题7.2 创新型问题高考数学选填题压轴题突破讲义(原卷版)
专题7.2 创新型问题高考数学选填题压轴题突破讲义(解析版)
专题7.3 临界知识问题高考数学选填题压轴题突破讲义(原卷版)
专题7.3 临界知识问题高考数学选填题压轴题突破讲义(解析版)
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

收起
展开