椭圆 基本量问题 第7讲 解析几何10级 直线与椭圆的位置关系 满分晋级 解析几何级 直线与圆的综合运用 解析几何级 椭圆基本量问题 新课标剖析 当前形势 椭圆在近五年北京卷(理)考查519分 高考 要求 内容 要求层次 具体要求 A B C 曲线与方程的对应关系 掌握求轨迹方程的一般方法,理解曲
著名机构高二数学文科秋季班讲义第2讲Tag内容描述:
1、椭圆基本量问题第7讲 解析几何10级直线与椭圆的位置关系满分晋级解析几何级直线与圆的综合运用解析几何级椭圆基本量问题新课标剖析当前形势椭圆在近五年北京卷(理)考查519分高考要求内容要求层次具体要求ABC曲线与方程的对应关系掌握求轨迹方程的一般方法,理解曲线与方程的对应关系椭圆的定义及标准方程由定义和性质求椭圆的方程;由椭圆的标准方程探求几何性质椭圆的简单几何性质由椭圆的几何性质解决问题直线与椭圆的位置关系判别式和韦达定理的应用;直线与椭圆相交截得的弦长北京高考解读2009年2010年(新课标)2011年(新课标)20。
2、函数的周期性与对称性第4讲 4.1函数的周期性知识点睛一般地,对于函数,如果存在一个非零常数,使得定义域内的每一个值,都满足,那么函数就叫做周期函数,非零常数叫做这个函数的周期对于一个周期函数,如果在它的所有周期中存在一个最小的正数,那么这个最小正数就叫做它的最小正周期今后涉及到的周期,如果不加特殊说明,均指最小正周期并不是任何周期函数都有最小正周期,如常量函数.周期函数的定义域是无界的,若为的周期,则(且)均为的周期常见周期函数形式(其中):,最小正周期为,最小正周期为,最小正周期为,最小正周期为经典。
3、等差数列与等比数列第9讲 知识点睛1等差数列:,等差数列,首项,公差,通项,前项和通项的主要公式:, 前项和的公式:;2等差数列的性质(其中公差为): 若和均为等差数列,则也是等差数列 数列(,为常数)仍为等差数列 若,则有;若,则有(,); 数列,为等差数列,公差为; 数列,为等差数列,公差为;若为等差数列,为其前项和,则;若为等差数列,则是等差数列,公差为,且3等比数列:,等比数列,首项,公比,通项,前项和通项的主要公式:, 当时,前项和的公式:; 4等比数列的性质(其中公比为): 各项同乘以一个不为零的。
4、第6讲平面性质与空间中的平行关系立体几何3级空间中的垂直关系满分晋级立体几何1级空间几何体的概念与结构立体几何2级平面性质与空间中的平行关系新课标剖析当前形势空间中的位置关系在近五年北京卷(文)考查14分高考要求内容要求层次具体要求ABC空间线、面的位置关系理解空间直线、平面位置关系的定义平面的三个公理灵活运用三个公理和推论证明点线面的位置关系线、面平行的判定与性质以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线、面平行的有关性质与判定;能运用公理、定理和已获得的结论证明一些空间位置关系的简单。
5、第9讲 导数在研究函数中的简单应用满分晋级导数3级导数的运算与几何意义导数1级导数的概念与运算导数2级导数在研究函数中的简单应用新课标剖析当前形势导数及其应用在近五年北京卷(文)中考查1318分高考要求内容要求层次具体要求ABC导数在研究函数中的应用利用导数研究函数的单调性(其中多项式函数不超过三次)函数的极值、最值(其中多项式函数不超过三次)利用导数解决某些实际问题北京高考解读2008年2009年2010年(新课标)2011年(新课标)2012年(新课标)第13题 5分第17题13分第18题14分第18题13分第18题13分第18题13分9.1利用导。
6、期中复习第6讲 6.1立体几何初步知识点睛现实世界中的物体构成几何体的基本元素 柱、锥、台、球的表面积和体积柱、锥、台、球的结构特征直观图和三视图的画法平面的基本性质 确定平面的条件空间平行线的传递性空间中的平行关系 直线与平面平行的判定及性质平面与平面平行的判定及性质直线与平面垂直的判定及性质空间中的垂直关系。
7、空间几何体的概念与结构第5讲满分晋级立体几何2级平面性质与空间中的平行关系立体几何3级空间中的垂直关系立体几何1级空间几何体的概念与结构新课标剖析当前形势空间几何体在近五年北京卷(文)考查510分高考要求内容要求层次具体要求ABC柱、锥、台、球及其简单组合体认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构柱、锥、台、球的表面积和体积灵活运用柱、锥、台、球及其简单组合体的表面积和体积公式,并能运用这些公式计算现实生活中简单物体的结构北京高考解读2008年2008年2010年(新课标。
8、第9讲 双曲线、抛物线基本量问题的典型考法解析几何12级直线与双曲线、抛物线的位置关系满分晋级解析几何10级直线与椭圆的位置关系解析几何11级双曲线、抛物线基本量问题的典型考法新课标剖析当前形势双曲线与抛物线在近五年北京卷(文)考查514分高考要求内容要求层次具体要求ABC双曲线的定义及标准方程由定义和性质求双曲线的方程;由双曲线的标准方程探求几何性质抛物线的定义及标准方程由定义和性质求抛物线的方程;由抛物线的标准方程探求几何性质双曲线的简单几何性质由双曲线的几何性质解决问题抛物线的简单几何性质由抛物线的几何性。
9、空间中的垂直关系第7讲立体几何4级空间向量满分晋级立体几何3级空间中的垂直关系立体几何2级平面性质与空间中的平行关系新课标剖析当前形势空间中的位置关系在近五年北京卷(文)考查14分高考要求内容要求层次具体要求ABC线、面垂直的判定与性质以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线、面垂直的有关性质与判定;能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题北京高考解读2008年2009年2010年(新课标)2011年(新课标)2012年(新课标)第16题 14分第16题 14分第16题 14分第16题 14分第16题 14分。
10、基本初等函数第4讲4.1 二次函数知识点睛1二次函数的定义形如的函数叫做二次函数,其定义域是上式叫做二次函数的一般式;二次函数的顶点式:二次函数两根式:,其中是方程的两根两根式的特点决定了它只能表示那些与轴有交点的二次函数,不能表示所有的二次函数2二次函数的性质 二次函数的判别式:当时,二次函数与轴有两个不同交点当时,二次函数与轴有一个交点当时,二次函数与轴没有交点 韦达定理当时,记二次函数与轴交点的横坐标为,则;注意韦达定理适用的前提条件:与轴有交点的二次函数 闭区间上二次函数的最值问题:二次函数在闭区。
11、综合测试第10讲一、选择题(本大题共8小题,每小题5分,共40分)1 抛物线的准线方程是( )ABCD【解析】 B2 若双曲线的离心率是2,则实数的值是( )ABC3D【解析】 D3 一个棱柱是正四棱柱的条件是 ( )A底面是正方形,有两个侧面是矩形 B底面是正方形,有两个侧面垂直于底面C每个侧面都是全等矩形的四棱柱D底面是菱形,且有一个顶点处的三条棱两两垂直【解析】 D4 已知函数, 则等于( )A B C D【解析】 C5 下列四个命题中,正确的是 ()A与同一个平面平行的两条直线平行B垂直于同一条直线的两个平面平行C垂直于同一个平面的两个平面平。
12、立体几何第14讲 14.1空间几何体知识点睛1构成几何体的基本元素:点、线、面点不考虑大小;线不考虑粗细;一条直线把平面分成两个部分面不考虑厚薄;一个平面将空间分成两个部分2多面体:由若干个平面多边形所围成的几何体凸多面体:把一个多面体的任意一个面延展成平面,其余的各面都在这个平面的同一侧 截面:一个几何体和一个平面相交所得的平面图形(包括它的内部)3多面体的表面积和体积公式名称侧面积全面积体 积棱柱棱柱直截面周长直棱柱棱锥棱锥各侧面面积之和正棱锥棱台棱台各侧面面积之和正棱台表中表示面积,分别表示上、下底面。
13、复数第1讲 新课标剖析当前形式复数在近五年北京卷考查5分高考要求内容要求层次具体要求ABC复数的基本概念了解数系的扩充的基本过程与复数的概念复数的几何意义与运算掌握复数的几何意义与复数的代数形式的四则运算法则北京高考解读2009年2010年(新课标)2011年(新课标)2012年(新课标)2013年(新课标)第1题5分第2题5分第2题5分第2题5分第4题5分1.1复数的概念知识点睛1复数的概念:设、都是实数,形如的数叫做复数,复数通常用小写字母表示,即,其中叫做复数的实部,叫做复数的虚部,称作虚数单位2复数的分类:当时,复数就成为实数。
14、阶段测试第7讲 本试卷分第卷(选择题)和第卷(非选择题)两部分,共150分考试时间120分钟姓名_ 成绩_第卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分在每小题列出的四个选项中,选出符合题目要求的一项1 已知复数满足,其中为虚数单位,则( )A B C D【解析】 B,则2 已知集合,则( )A B C D【解析】 D,所以3 已知点在角的终边上,则( )A B C D【解析】 C4 方程的一根大于,一根小于,则实数的范围是( )A B C 。
15、推理与证明第2讲 新课标剖析高考要求内容要求层次具体要求ABC推理与证明能利用归纳推理与类比推理进行简单的推理了解数学证明的基本方法:综合法、分析法与反证法等2.1推理知识点睛推理一般分为合情推理与演绎推理1合情推理:前提为真,结论可能为真的推理归纳推理和类比推理是数学中常用的合情推理归纳推理:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳)归纳是从特殊到一般的过程归纳推理的一般步骤:第1步 通过观察个别情况发现某些相同的性质;第2步 从已知的相同性质。
16、推理与证明第2讲2.1合情推理与演绎推理知识点睛本板块共两道例题,例1是合情推理,包括归纳推理与类比推理两种;例2是演绎推理,涉及到其中的三段论推理与完全归纳推理推理:根据一个或几个已知事实(或假设)得出一个判断这种思维方式就是推理从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设),叫做前提;一部分是由已知推出的判断,叫做结论推理一般分为合情推理与演绎推理1合情推理:前提为真,结论可能为真的推理归纳推理和类比推理是数学中常用的合情推理归纳推理:根据一类事物的部分对象具有某种性质,推出这类事。
17、椭圆初步第2讲解析几何3级双曲线与抛物线初步满分晋级解析几何2级椭圆初步解析几何1级直线与圆的方程新课标剖析当前形势椭圆在近五年北京卷(文)考查514分高考要求内容要求层次具体要求ABC曲线与方程的对应关系掌握求轨迹方程的一般方法,理解曲线与方程的对应关系椭圆的定义及标准方程由定义和性质求椭圆的方程;由椭圆的标准方程探求几何性质椭圆的简单几何性质由椭圆的几何性质解决问题直线与椭圆的位置关系判别式和韦达定理的应用;直线与椭圆相交截得的弦长北京高考解读2008年2009年2010年(新课标)2011年(新课标)2012年(新课标。
18、椭圆基本量问题第7讲 解析几何10级直线与椭圆的位置关系满分晋级解析几何级直线与圆的综合运用解析几何级椭圆基本量问题新课标剖析当前形势椭圆在近五年北京卷(文)考查519分高考要求内容要求层次具体要求ABC曲线与方程的对应关系掌握求轨迹方程的一般方法,理解曲线与方程的对应关系椭圆的定义及标准方程由定义和性质求椭圆的方程;由椭圆的标准方程探求几何性质椭圆的简单几何性质由椭圆的几何性质解决问题直线与椭圆的位置关系判别式和韦达定理的应用;直线与椭圆相交截得的弦长北京高考解读2009年2010年(新课标)2011年(新课标)20。
19、立体几何初步第1讲 满分晋级立体几何5级空间向量与立体几何立体几何7级立体几何之平行问题立体几何6级立体几何初步新课标剖析当前形势立体几何在近五年北京卷(文)考查1924分高考要求内容要求层次具体要求ABC柱、锥、台、球及其简单组合体认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构三视图,斜二测法画简单空间图形的直观图能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型;通过观察用两种方法(平行投影与中心投影)画出。
20、期末复习第15讲 15.1圆锥曲线知识点睛椭圆的定义:到两个定点的距离之和等于常数(大于)的点的轨迹叫做椭圆,两定点称为椭圆的焦点椭圆的标准方程:椭圆的几何性质:范围:;对称性:关于轴,轴成轴对称,关于原点(椭圆的中心)成中心对称;顶点:,;长轴:线段;短轴:线段;离心率:,越大,椭圆越扁;圆锥曲线双曲线双曲线的定义:平面内到两个定点的距离的差的绝对值等于常数(小于)的点的轨迹叫做双曲线,两定点称为双曲线的焦点双曲线的标准方程:()双曲线的几何性质:范围:或;对称性:关于轴,轴成轴对称,关于原点(双曲线。