1 16 一元一次方程的应用是初中数学六年级下学期第 2 章第二节的内容, 主要考 察方程的思想方法 列方程解应用题是用字母来代替未知数, 根据等量关系列出 含有未知数的等式,即列出方程,然后解出未知数的值本讲的重点是掌握利用 方程的思想解决相关的实际问题, 有利于培养学生利用数学知识解决实际问题
著名机构六年级数学春季班第2讲方程Tag内容描述:
1、 1 / 16 一元一次方程的应用是初中数学六年级下学期第 2 章第二节的内容, 主要考 察方程的思想方法 列方程解应用题是用字母来代替未知数, 根据等量关系列出 含有未知数的等式,即列出方程,然后解出未知数的值本讲的重点是掌握利用 方程的思想解决相关的实际问题, 有利于培养学生利用数学知识解决实际问题的 能力 一元一次方程的应用 内容分析内容分析 知识结构知识结构 2 / 16 1、 列方程解应用题的一般步骤列方程解应用题的一般步骤 (1)审题:分析题中的条件,什么是所求的,什么是已知的,并了解已知量和所求 量之间的数量关系; 。
2、 1 / 21 长方体的再认识是初中数学六年级下学期第 4 章的内容通过本章的学习, 同学们需要掌握长方体的表示方法、 长方体直观图的画法, 理清长方体中棱与棱 的位置关系、棱与平面的位置关系、平面与平面的位置关系,并要学会如何检验 直线与平面是否垂直、直线与平面是否平行、平面与平面是否垂直、平面与平面 是否平行的方法难点是相关的长方体的表面积和体积的计算 1、 长方体的元素长方体的元素 长方体有六个面面,八个顶点顶点,十二条棱棱 2、 长方体的元素特征长方体的元素特征 (1)长方体的每个面都是长方形 (2)长方体的十二条。
3、 1 / 23 一次方程组是初中数学六年级下学期第 2 章第 4 节的内容 本讲主要讲解二 元一次方程的概念, 二元一次方程组和三元一次方程组的概念及其解法, 同学们 需要多多练习,做到能够灵活快速地解方程组 1、 二元一次方程二元一次方程 含有两个未知数的一次方程叫做二元一次方程二元一次方程 2、 二元一次方程的解二元一次方程的解 使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解二元一次方程的解 3、 二元一次方程的解集二元一次方程的解集 二元一次方程的解有无数个,二元一次方程的解的全体叫做这个二元一次方程。
4、 1 / 15 一次方程组的应用是初中数学六年级下学期第 2 章第 4 节的内容, 主要考察 方程的思想方法之前学习一元一次方程的应用,只需设一个未知数,列方程解 应用题,而方程组的应用需要考虑设几个未知数来解决问题 列方程组解应用题时要灵活选择未知数的个数 对于含有两个未知数的应用 题一般采用列二元一次方程组求解; 对于含有三个未知数的应用题一般采用列三 元一次方程组求解 本讲的重点是掌握利用方程组的思想解决相关的实际问题, 有利于培养学生 利用数学知识解决实际问题的能力 1、 列方程组解应用题的一般步骤列方程组解应用题。
5、 1 / 21 xy15 一次方程组的应用是初中数学六年级下学期第 2 章第 4 节的内容, 主要考察 方程的思想方法之前学习一元一次方程的应用,只需设一个未知数,列方程解 应用题,而方程组的应用需要考虑设几个未知数来解决问题 列方程组解应用题时要灵活选择未知数的个数 对于含有两个未知数的应用 题一般采用列二元一次方程组求解; 对于含有三个未知数的应用题一般采用列三 元一次方程组求解 本讲的重点是掌握利用方程组的思想解决相关的实际问题, 有利于培养学生 利用数学知识解决实际问题的能力 1、 列方程组解应用题的一般步骤列方程组解。
6、 1 / 17 线段与角是初中数学六年级下学期第 3 章的内容 本章我们学习了线段与角 这两种最简单的几何图形的相关概念、 画法及大小比较 重点的是尺规作图及线 段与角的和、差、倍的相关计算 单元练习:线段与角 内容分析内容分析 知识结构知识结构 角的度量 互余: 互补: 线段的大小比较 1、度量法用刻度尺度量 2、叠合法 线段的中点 线段的和、差、倍 画一条线段等于已知线段 线段 a、b 角的大小比较 1、度量法用量角器度量 2、叠合法 角的平分线 角的和、差、倍 画一个角等于已知角 线段、 1、度量方法 2、尺规作图 1、度量方法 2、尺规。
7、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,目录,上一页,空白页,知识点复习,1. 分数:,可化为分数的数.,2. 绝对值的非负性:,3. 有理数加法:确定符号 绝对值相加减 (同加异减),有理数乘除:确定符号 绝对值相乘除 (奇负偶正),(奇负偶正),目录,上一页,空白页,【前铺1】,下列各式中,哪些是等式?哪些是代数式? 等式:_,目录,上一页,空白页,【例1】,(1)下列说法不正确的是:( ) A等式两边都加上一个数或一个式。
8、 1 / 18 本讲整理了关于有理数及一元一次方程的相关习题, 供同学们进行期中复习 期中复习 内容分析内容分析 知识结构知识结构 除法除法 有理数有理数 乘法乘法 减法减法 绝对值 加法加法 相反数 数轴 转化转化 转化转化 科学记数法 有理数比较大小 加 法 法 则 减 法 法 则 乘 法 法 则 除 法 法 则 加 法 运 算 律 乘 法 运 算 律 乘 方 方程及方程的解 一元一次方程的解法及应用 一元一次方程 2 / 18 【练习1】 下列选项中属于方程的是( ) A56121 B21x C341x D0y 【难度】 【答案】 【解析】 【练习2】 下列关于 x 的一元一次方程有。
9、 1 / 23 本学期我们学习了有理数的概念及运算, 一次方程 (组) 和一次不等式 (组) 的解法及应用,线段与角的画法及长方体的再认识 期末复习 内容分析内容分析 知识结构知识结构 除法除法 有理数有理数 乘法乘法 减法减法 绝对值 加法加法 相反数 数轴 转化转化 转化转化 科学记数法 有理数比较大小 加 法 法 则 减 法 法 则 乘 法 法 则 除 法 法 则 加 法 运 算 律 乘 法 运 算 律 乘 方 2 / 23 一次方程(组) 一次不等式(组) 三元一次方程组 一元一次方程 二元一次方程(组) 一元一次不等式(组) 三元一次方程组 一元一次方程 。
10、 1 / 25 本讲整理了关于有理数及一元一次方程的相关习题, 供同学们进行期中复习 期中复习 内容分析内容分析 知识结构知识结构 除法除法 有理数有理数 乘法乘法 减法减法 绝对值 加法加法 相反数 数轴 转化转化 转化转化 科学记数法 有理数比较大小 加 法 法 则 减 法 法 则 乘 法 法 则 除 法 法 则 加 法 运 算 律 乘 法 运 算 律 乘 方 方程及方程的解 一元一次方程的解法及应用 一元一次方程 2 / 25 【练习1】 下列选项中属于方程的是( ) A56121 B21x C341x D0y 【难度】 【答案】D 【解析】方程:含有未知数的等式叫做方程;A 中没。
11、 1 / 19 角是初中数学六年级下学期第 3 章第 2 节的内容 同学们要理解角、 余角和 补角的概念, 掌握角的表示方法、 角的大小的比较的方法, 理解两个角的和、 差、 倍的意义,会用量角器画角,并学会用尺规作角及角的和、差,理解角的平分线 的意义,并会用尺规作已知角的平分线,还要掌握角度的单位换算及相关运算 角 内容分析内容分析 知识结构知识结构 2 / 19 顶点 边 边 始边 终边 A B O B A C D O 1、 角的概念角的概念 角角是具有公共端点的两条射线组成的图形如下左图所示,公共端点叫做角的顶点顶点,两条 射线叫做角的边边 我们。
12、 1 / 24 角是初中数学六年级下学期第 3 章第 2 节的内容 同学们要理解角、 余角和 补角的概念, 掌握角的表示方法、 角的大小的比较的方法, 理解两个角的和、 差、 倍的意义,会用量角器画角,并学会用尺规作角及角的和、差,理解角的平分线 的意义,并会用尺规作已知角的平分线,还要掌握角度的单位换算及相关运算 角 内容分析内容分析 知识结构知识结构 2 / 24 顶点 边 边 始边 终边 A B O B A C D O 1、 角的概念角的概念 角角是具有公共端点的两条射线组成的图形如下左图所示,公共端点叫做角的顶点顶点,两条 射线叫做角的边边 我们。
13、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,【例1】,(1)如图所示,小明从家到学校有、三条路可走,每条路的长分别是a、b、c, 则( ) A. abc B. acb C. a=bc D. a=bc,目录,上一页,空白页,【例1】,(2)(黑龙江省哈尔滨市中考题)已知点O在直线AB上,且线段OA的长度为4cm,线段OB的长度为6cm,E、F分别是线段OA、OB的中点,则线段EF的长度为_,目录,上一页,空白页,【基础】线段AB=2009cm,P、Q。
14、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,知识回顾,一、二元一次方程组的解法 代入消元法 加减消元法 二、含参数方程的解的情况: 同解、唯一解、无数解、无解、整数解等. 字母系数一元一次方程 方程ax=b的解要分类讨论 当a0时,方程的解是 当a=0且b=0时,方程的解是任意数 当a=0且b 0时,方程无解,目录,上一页,空白页,【例1】,解下列二元一次方程: (1) (2),目录,上一页,空白页,【例1】,。
15、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,【例1】,证明恒等式:,目录,上一页,空白页,证明:,【例2】,目录,上一页,空白页,【例3】,求证:,目录,上一页,空白页,【例4】,证明恒等式:,目录,上一页,空白页,【例5】,证明恒等式:,目录,上一页,空白页,【例6】,证明恒等式,目录,上一页,空白页,【例7】,证明:,目录,上一页,空白页,实数a与b满足 ,求 的值.,【例8】,目录,上一页,空白页,【例9】,已知 且。
16、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,知识要点,代数式恒等变形的意义和代数式恒等变形中常用的特殊方法和 技巧。 把一个代数式通过各种运算或因式分解,变换成另一个与它恒 等的代数式,叫做代数式的恒等变形;代数式的运算是指代数式的 化简和求值。代数式的运算和恒等变形能力是学习数学的重要基本 功之一,恒等变形的作用在于改变原来问题的形式,做到化繁为 简,变难为易,使问题快捷。
17、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,知识要点,幂的运算法则(乘方运算): 1、 (n为正整数) 2、 (m,n都为正整数) 3、 (m,n都为正整数,且 , ) 4、 ( m,n都为正整数) 5、 (m为正整数) ( ) ( ,m为正整数) 平方差公式: ; 完全平方公式: ;,目录,上一页,空白页,知识要点,三元平方公式: 立方和公式: ; 立方差公式: ;,目录,上一页,空白页,知识要点,和的完全立方公。
18、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,知识要点,知识点1:同底数幂的乘法法则 同底数幂相乘,底数不变,指数相加,即 (m、n为正整数) (1)此性质可以推广到三个或三个以上的同底数幂相乘,即 ,( 都为正整数) (2)此性质可逆用,即 (m、n为正整数) 知识点2:幂的乘方法则 幂的乘方,底数不变,指数相乘,即 ( m、n 为正整数) 此性质可逆用,即,目录,上一页,空白页,知识要点,知识。
19、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,知识要点,一、整式 :代数式 代数式的定义:用基本的运算符号(加、减、乘、除、乘方等)把数或表示数的字母连结而成的式子叫做代数式单独的一个数或字母也是代数式 :单项式 单项式:像 ,这些代数式中,都是数字与字母的积,这样的代数式称为单项式也就是说单项式中不存在数字与字母或字母与字母的加、减的关系,且单项式的分母中不含字母单独的一。
20、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,知识回顾,方程ax=b的解要分类讨论 当a0时,方程的解是 当a=0且b=0时,方程的解是任意数 当a=0且b 0时,方程无解 所以含参数方程的解的情况:唯一解、无数解、无解等.,目录,上一页,空白页,【例1】,解关于x的方程: 1. 2.,目录,上一页,空白页,若关于x的方程 有无穷多个解,求a, B 的值,【例2】,目录,上一页,空白页,2. 若a、b为定值,关于x的一元一次方。